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Cour se Description

The course named " Strength of Materials' or "Mechanics of
Materials' deals with, Concept of stress, Stresses and strains, Axial
loading and axial deformation, Hook’s law, Statically indeterminate
members, Stresses due to temperature, Torsion, Internal forces in
beams, pure bending or Beam theory, Transverse loading and shear
stresses in beams, beam deflection, Transformation of stresses and
strains,. Principal stresses and strains, in addition to Axially

compressed members and buckling of columns.
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TOPICS

1.concept of stress
2.Concept of Strain
3.Statically indeterminate problems
4. Thermal stresses
5.Stresses in thin wall vessels, Poison's ratio
6.Beams, shear force and bending moment equations.
7.Shear force and bending moment Diagrams
8.Stresses in Beams, Bending stresses
9.Shear stressesin Beams

10.Deflection of Beams

11. Torsion

12. Buckling of Columns

13. Stress Transformation and Mohr's Circle

14. Problems on Mohr's Circle



UNIVERSITY OF ANBAR
COLLEGE OF ENGINEERING

DAM & WATER RESOURCES

CNVESSITY DF AN

STREMGTH OF MATERIALS

CHAPTER 1

Stress

Concept of Stress: Let us introduce the concept of stress, as we know that the main
problem of engineering mechanics of materia is the investigation of the internal
resistance of the body, i.e. the nature of forces set up within a body to balance the
effect of the externally applied forces.

The externally applied forces are termed as loads. These externally applied forces
may be due to any one or more of the followings:

(i) dueto service conditions

(ii) dueto environment in which the component works

(iii) through contact with other members

(iv) dueto fluid pressures

(v) dueto gravity or inertiaforces (Self weight of the structure).

As we know that in mechanics of deformable
solids, externally applied forces acts on a body and P(or F)
body suffers a deformation. From equilibrium point N
of view, this action should be opposed or reacted by
internal forces which are set up within the particles of
material due to cohesion. These internal forces give
rise to a concept of stress. Therefore, let us define a

section XX. Each portion of this rectangular bar
isin equilibrium under the action of load P and

term stress: ElorF)
' N
Stress:
Let us consider a rectangular bar of some z
cross-sectional area and subjected to some load |
or force (in Newton ). l
I
Let us imagine that the same rectangular | €— o ] }—
bar is assumed to be cut into two halves at | * —) | =
|

the internal forces acting at the section XX has
been shown.
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Simple Stress

Simple stress is expressed as the ratio of the applied force divided by the resisting
areaor:

6 = Force / Area.

It is the expression of force per unit areato structural members that are subjected to
external forces and/or induced forces. Here we are using an assumption that the total
force or total load carried by the bar is uniformly distributed over its cross-section.

Units:

The basic units of stress in S.I unitsi.e. (International System) are N/m? (or Pa,
Pascal)

MPa=10°Pa , GPa=10°Pa , KPa=10°Pa

Sometimes N/mm? units are also used, because this is an equivalent to MPa,
while US customary unit is pound per squareinch, psi. (Ib/in?).

Simple stress can be classified as normal stress, shear stress, and bearing stress.
Normal stress develops when aforce is applied perpendicular to the cross-sectional
area of the materia. If the force is going to pull the material, the stress is said to be
tensile stress and compressive stress develops when the material is being
compressed by two opposing forces.

Shear stressis developed if the applied forceis

Forces
parallel to the resisting area. Example is the |
bolt that holds the tension rod in its anchor. T —
Another condition of shearing is when we twist el e
a bar along its longitudinal axis. This type of DBJECT ,_,/_"l
shearing is caled torsion and covered in ’ /-/ 7 y 4
Chapter 3. l: 7 o s

Another type of simple stress is the bearing Besarng sirasses at
stress, it is the contact pressure between two e contact suface
bodies. (Itis infact acompressive stress).

Suspension bridges are good example of structures that carry these stresses. The
weight of the vehicle is carried by the bridge deck and passes the force to the stringers
(vertical cables), which in turn, supported by the main suspension cables. The
suspension cables then transferred the force into bridge towers. 6
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Normal Stress

The resisting area is perpendicular to the applied force, thus normal. There are two
types of normal stresses; tensile stress and compressive stress. Tensile stress applied
to bar tends the bar to elongate while compressive stress tend to shorten the bar.

p P
¢ = Force / Area
P p
c=P/ A
Bar in Tension Bar in Compression

where P is the applied norma load in Newton and A is the area in mm? The
maximum stress in tension or compression occurs over a section normal to the load.

EXAMPLE PROBLEMSIN NORMAL STRESS

Example 101: A hollow stedl tube with an inside diameter of 100 mm must carry a
tensile load of 400 kN. Determine the outside diameter of the tube if the stress is

limited to 120 MN/m?.
Solution 101: _
P=gA —
where: 100 | D
F =400 kN = 400 000 I \
o =120 MPa
A=1nD?- Ln(100)
= Lm(D= - 10 000)
thus, ¢ P =400 kN

400 000 = 120[ 1 (D2 — 10 000)]

400 000 = 30mD* — 300 000m
D= 400 000+ 300 000m

307
D =119.35 mm 7
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Example 102 A homogeneous 800 kg bar AB is supported at either end by a cable as
shown in Fig. P-105. Calculate the smallest area of each cable if the stressisnot to
exceed 90 MPain bronze and 120 MPain steel.

Solution:

ph-

b,

1

Em l 5m

W =800kg = 7848 N

By symmetry:

Py, =Py = +(78435)
=3024 N

For bronze cable:

Py = Gy Ay
3024 = 00A,,
A = 43.6 mum?

For steel cable:

P = G Aat
3924 =120A,,;
Ag = 32.7 mm?

i I

Sreeal
L=3m

A 10m

gl

Example 103 An aluminum rod isrigidly attached between a steel rod and a bronze

rod as shown in Fig. P-108. Axial loads are applied at the positions indicated. Find the
maximum value of P that will not exceed a stressin steel of 140 MPa, in aluminum of
90 MPa, or in bronze of 100 MPa.

Solution:

For bronze:
T A = 2P
100(200) = 2F
F=100001

For alumdnism:
La ] ﬂm' =F
40 =F
F=300001
For Steel:

Tt Aes = 5P
F=14 000N

St Auminum  gronze
; IE 4P P

-p

|
il

-2p

5P
Megative (-} means compression

Forsafe P, use F=10000 N =10 kN

Alurninum

A = 400 mm*

Bronze

| Seeel & = 200 mm*

A = 500 mm? J'(

¥ -
P

= ap ‘

P

2Em

—
2P

20m  15m
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Example 104 A 12-inches square steel bearing plate lies between an 8-inches
diameter wooden post and a concrete footing as shown in Fig. P-110. Determine the
maximum value of the load P if the stress in wood is limited to 1800 psi and that in

concrete to 650 psi.

Figure P-110

Shearing Stress
Forces paralld to the arearesisting the force cause shearing stress. It differsto tensile
and compressive stresses, which are caused by forces perpendicular to the areaon
which they act. Shearing stressis also known as tangential stress.

V

™= 2

where V isthe resultant shearing force which passes through the centroid of the area

A being sheared.
7 b S 4

SRR |
o

R
b

=
fffﬁ"d’?fﬁfffffﬁ?}l T

[ B S
SR B

Double Shaar
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SOLVED EXAMPLESIN SHEARING STRESS

Example 105: What forceis required to punch a 20-mm-diameter hole in a plate that

is 25 mm thick? The shear strength is 350 MN/m?.

Solution:
g The resisting area is the shaded area
Puncher along the perimeter and the shear force
20 V 1s equal to the punchung force P.
25 mm thick Ve=1A
P = 350[x(20)(25)]
=5407787 N
Punched out .L =5498 kN
s
el |
20

Example 106: Find the smallest diameter bolt that can be used in the clevis shown in
Fig. 1-11bif P =400 kN. The shearing strength of the bolt is 300 MPa.

Solution :

-

p p

Figure 1-11b

pin diameter is 20 mm.

40
Example 107 Compute the shearing stressin the pin A 35¢
at B for the member supported as shown in Fig. The | é E

The bolt is subject to doubie shear
V=14

400(1000) = 300[2( + ")}
d=2913 mm

il
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Solution :
From the FBLY
TM-=0
0. 25Ky = 0.25(40 sin 35%)
40 kN + 0.2{40 cos 35%)
P Ray = 49150 KN
T YFy=0
L. Ra = 40 cos 35°
rs =32 766 kN
| BN C
- L :
™ = ; r&’ Ra= \IR.{_ "'R—m-!
= 0.25 mi = i 4 e
ad 41"-1 Jslx_m +49.156 |
=59076 KN 2 shes foice of pin ot B
Frea Body Diagram
Vo= 1A + double shear
50.076 (1000) = s 2[4 =(209])
tp = SL02 MPa

Bearing Stress

Bearing stress is the contact pressure betwean the separata bodles. It differs from

compressive stress, as ibis an internal stress caused by compressive forces.

P | Py
— | :E —_—
F B

e —
.

o=
s B s
-

11
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PRE FA CE

SOLVED EXAMPLES IN BEARING STRESS

Example 125: In Fig.1-12, assume that a 20-mm-diameter rivet joins the plates that
are each 110 mm wide. The allowable stresses are 120 MPa for bearing in the plate
material and 60 MPa for shearing of rivet. Determine (a) the minimum thickness of
each plate; and (b) the largest average tensile stress in the plates.

Solution

(a) From shearing of nivet:
P = tAaven
= 60[ 4 (20%))
= 6000 N

b T
L o mT
20-mm @
F | T

From bearing of plate maternal.

P=aovAs
6000 = 120(20¢)
t=7.85 mm

(b) Largest average tensie stress in the plate

P=gA

6000 = o[7.85(110 ~ 20)]

a = 2667 MPa

B R AR P F IO W o P2
fvaioey [

Figura 1-13

e R e N b

Example 126: The lap joint shown in Fig.P-126 is fastened by four ¥in.-diameter
rivets. Calculate the maximum safe load P that can be applied if the shearing stress in
the rivets is limited to 14 ksi and the bearing stress in the plates is limited to 18 ksi.
Assume the applied load is uniformly distributed among the four rivets.

o
|

& in

* Ld

P

TWin
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Solution

Based on sheanng of nvets:
P=14

P=13{4(3m(3)° )

P =24 74 kips

Based on beanng of plates:
P=aoyAs

P=18[4(3)}®)]

P =475 kips

Safe load P = 24.74 kips

Example 127: In the clevis shown in Fig.1-11b, find the minimum
bolt diameter and the minimum thickness of each yoke that will
support a load P = 14 kips without exceeding a shearing stress of
12 ksi and a bearing stress of 20 ksi.

Solution:
For shearing of nivets (double
shear)
P P=zA
14=12[2(3xd%))
d = 08618 in - diameter of bolt
For bearing of yoke:
P=add
0.59 0.5p 14 = 20[2(0.86181)]
ol t=04061in - thickness of voke

Figure 1-11b

sl
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Thin-Walled Pressure Vessels

A tank or pipe carrying a fluid or gas under a pressure is subjected to tensile
forces, which resist bursting, developed across longitudinal and transverse sections.

Tangential Stress(Circumferential Stress):
Consider the tank shown being subjected to an internal pressure p. The length of
thetank isL and the wall thicknessist. Isolating the right half of the tank:

-

F=pA =pDL

T =0Awal =0etl
YFu=0

F=2T

pDL = 2(o: tL)

Ot — pD/Zt
If there exist an external pressure p, and an internal pressure p;, the formulamay be
expressed as.
(pi —po)D
O = ————
t 2t

LONGITUDINAL STRESS, o,

Consider the free body diagram in the transverse section of the tank:

114
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Thetotal force acting at the rear of the tank F must equal
to the total longitudinal stress on thewall Pr =6, Ayai.
Sincet is so small compared to D, the area of thewall is

close to Dt .

F'pA'p§D‘

Py =gy nDt
[EFu=0]
PT.F

oL xDt= p-}D"

If there exist an external pressure p, and an internal pressure p; , the formula may be
expressed as.

(pi —po)D

It can be observed that the tangentia stressis twice that of the longitudinal stress.

6. =20,

Spherical Shell: If aspherical tank of diameter D and thicknesst
contains gas under a pressure of p, the stress at the wall can be
expressed as.

I‘.TL _ {_‘pi —3:0}!)

4
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SOLVED EXAMPLESIN THIN WALLED PREASSURE VESSELS

Example 133: A cylindrical steel pressure vessel 400 mm in diameter with awall
thickness of 20 mm, is subjected to an internal pressure of 4.5 MN/m2. (a) Calculate
the tangential and longitudinal stressesin the steel. (b) To what value may the internal
pressure be increased if the stress in the steel is limited to 120 MN/m?? (c) If the
internal pressure were increased until the vessel burst, sketch the type of fracture that
would occur.

Solution

(a) Tangential stress (longitudinal section):
F=2T
pDL = 2(c; tL)
= pD = 4.5(400)
2t 2(20)
o, = 45 MPa

Gt

Longitudinal Stress (vansverse section)::
F=P
% =Dp = o1 (nDt)

pD _ 4.5(400)

4t 4(20)

o=

d
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o, =225 MPa

(b) From (a), G: = Zz—?u\dc‘- Eg— thus, o = 20,

thus shows that tangential stress is the critical

.2
™ 2

2= P(390)

Transverse Section 2(20)
P=12MPa

() The bursting force will cause a stress on the
longitudinal section that is twice to that of the:
transverse section. Thus, fracture is expected as,

shown. Expected fracture
when imemal
pressure is
increased unt!
the vassel burst

400 mm
L internal
dametey

Prepared by : Ass. Prof. Dr. Ayad A. Sulaibi & Dr.Ghassan S. Jameel 1748l
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CHAPTER 2

STRAIN

Simple Strain

Strain ( €) isthe ratio of the change in length caused by the applied force,
to the original length.(Also known as unit deformation).

where o is the deformation and L is the original length, thus € is
dimensionless.

Stress-Strain Diagram

Suppose that a metal specimen be placed in tension-compression testing
machine. As the axial load is gradually increased in increments, the total
elongation over the gage length is measured at each increment of the load and
this is continued until failure of the specimen takes place. Knowing the
original cross-sectional area and length of the specimen, the normal stress o
and the strain € can be obtained. The graph of these quantities with the stress ¢
along the y-axis and the strain & along the x-axis is called the stress-strain
diagram. The stress-strain diagram differs in form for various materials. The
diagram shown below is that for a medium carbon structural steel.

Metallic engineering materials are classified as either ductile or brittle
materials. A ductile material is one having relatively large tensile strains up to
the point of rupture like structural steel and auminum, whereas brittle

Prepared by : Ass. Prof. Dr. Ayad A. Sulaibi & Dr.Ghassan S. Jameel 184aiall
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materias has a relatively small strain up to the point of rupture like cast iron
and concrete. An arbitrary strain of 0.05 mm/mm is frequently taken as the
dividing line between these two classes.

ActuzTRupturs Strength —
U - Ukimate Strength —y -

?
A R — Rupture Strength —
WY

|\ \— ¥ — Vield Paint

RS,

\ ' E — Elastic Limit

P - Progortional Limit

Q Strain, =

Proportional Limit (Hooke's L aw)

From the origin o to the point called proportiona limit, the stress-strain
curve is a straight line. This linear relation between elongation and the axial
force causing was first noticed by Sir Robert Hooke in 1678 and is called
Hooke's Law that within the proportional limit, the stress is directly
proportional to strain or:

g © £ Or
o=ke

The constant of proportionality k is called the Modulus of Elasticity E or
Young's Modulus and is equal to the slope of the stress-strain diagram from O
toP. Then:

oc=E¢
Elastic Limit

The elastic limit is the limit beyond which the materia will no longer go
back to its origina shape when the load is removed, or it is the maximum
stress that may be developed such that there is nonper manent (or residual)

Prepared by : Ass. Prof. Dr. Ayad A. Sulaibi & Dr.Ghassan S. Jameel 194aiall
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deformation when the load is entirely removed.

Elastic and Plastic Ranges
Theregion in stress-strain diagram from O to P is called the elastic range. The
region from Pto R is called the plastic range.

Yield Point
Yield point is the point at which the material will have an appreciable
elongation or yielding without any increase in load.

Ultimate Strength
The maximum ordinate in the stress-strain diagram is the ultimate strength or
tensile strength.

Rupture Strength
Rupture strength is the strength of the material at rupture. Thisis also known
as the breaking strength.

M odulus Of Resilience

Modulus of resilience is the work done on a unit volume of material as the
forceis gradualy increased from O to P, in Nm/m3. This may be calculated as
the area under the stress-strain curve from the origin O to up to the elastic
limit E (the shaded area in the figure). The resilience of the materid is its
ability to absorb energy without creating a permanent distortion.

M odulus Of Toughness

Modulus of toughness is the work done on a unit volume of materia as the
force is gradually increased from O to R, in Nm/m3. This may be calculated
as the area under the entire stress-strain curve (from O to R). The toughness of
amaterial isits ability to absorb energy without causing it to break.

STIFFNESS, k
Stiffness is the ratio of the steady force acting on an elastic body to the
resulting displacement. It has the unit of N/mm.

Prepared by : Ass. Prof. Dr. Ayad A. Sulaibi & Dr.Ghassan S. Jameel 204asall
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k=P/d

Working Stress, Allowable Stress, And Factor Of Safety

Working stress is defined as the actual stress of a materia under a given
loading. The maximum safe stress that a material can carry is termed as the
allowable stress. The allowable stress should be limited to values not
exceeding the proportional limit. However, since proportiona limit is difficult
to determine accurately, the allowable tress is taken as either the yield point or
ultimate strength divided by a factor of safety. The ratio of this strength
(ultimate or yield strength) to allowable strength is called the factor of safety.

AXIAL DEFORMATION

In the linear portion of the stress-strain diagram, the tress is proportional to
strain and isgiven by:e = Eg

sinccoc=P/Aande=9d/L,thenP/A=Ed/L. Solving for o,
PL oL

§=—= —
AE E

To use this formula, the load must be —7— 1T ———
axial, the bar must have a uniform cross-
sectional area, and the stress must not exceed
the proportiona limit. If however, the cross-

SN

sectional area is not uniform, the axia :
deformation can be determined by H dx v
considering a differential length and applying * !
integration. de *
where A =ty andy and t, if variable, must be B “":f:.,-
o= — b
E 1y £

Prepared by : Ass. Prof. Dr. Ayad A. Sulaibi & Dr.Ghassan S. Jameel 2148l
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expressed in terms of X.

For a rod of unit mass p suspended vertically from one end, the total
elongation due to itsown weight is:

6—ng2— MgL
~ 2E  2AE

where p is in kg/m?, L is the length of the rod in mm, M is the total mass of
the rod in kg, A is the cross-sectional area of the rod in mm?, and g = 9.81
m/s’.

SOLVED EXAMPLES ON STRAIN & AXIAL DEFORMATION

Concept Application 2.1

Determine the deformation of the steel rod shown i Fig. 2,19 under
the given loads (E = 20 = 10" psi),
The ot is divided into tiree component parts in Fig. 2.1806, sa
Ly = Le =120, Ly = 16,
A= Ay = 0pin® Ay = 03in"

To find the imtermal forces Py, Py, and P, pass sections thoough sach
of the component parts, drawing each time the free-body disgram of
the porton of rod lecated 1o the pight of the section (Flg 2.19¢). Each
of the free bodies is in equilibrium; thos

Py = &0 kips = 60 % 107 b
i — Py= —15kips = =15 % 10" b
B M1 ipe Py = 30kips = 30 = 107 [k
[E]
r,-—;=.—— G
i I 2 O Y N L P
a-l.'-hprr 8= r-l“|E|_E _I‘_!+A.+‘q-
. o Y (60 = WP IZ)
J i kips 20 = tﬂ. 9
i milkim e P L iy (o0 x 1o 1
Fig. 219 1) Astally-losded rod. i Bod 0.3 na
drsided oo defess decTiong. (o) Thies aom ® 1{*
sactonad free-bedy disgrami with imtemal == = 758 x 107 in
FRELBART [aicad P, P, 5l 29 x0T
h

Prepared by : Ass. Prof. Dr. Ayad A. Sulaibi & Dr.Ghassan S. Jameel 2248l
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Sample Problem 2.1

The rigld har ADE ix supporied by two Inks AR and C). Link A8 s
made of aluminum (F = 70 GPa) and has 8 cross-sectional area of
Sy mm?. Link ©0 ks made of steel | E = 208 GPa) and has a cross-
sectonal area of 600 mm’, For the 30-kN force shown, determine the
deflection (&) of B, [#) of £, and (c) of E

STRATEGY: Considerthe free body of the rigid bar to determine the
Ingernal force of each link. Enowing these forces and the properties of
the ks, their deformations can be evaluated. You can then use simn-
ple geometry o determine the deflection of E.

MODELING: Dwvaw the free body diagrams of the rigld bar (Fig. 1)
and the two links | Fig. 2 and 3]

AMALYSIS:
Fres Body: Bar BDE (Fig. 1)
HEMy= 0 —[IB kN0 Em) + Fep02m) = 0
Fop = +90kN = 90kN tension
+NE My = & —[ankMH04m) — Fgl0lm) =0

Fan i i N
l Fua = —60 kN Fu = 60 kM compression
L—[ T a. Deflection of B.  Since the Internal force In link AB Is compres-
| —li_ | dve (Fig. 2), P = =60 kN and
b hd mm

0dm : B (s wNNDAm) St AR
Fig- 1 Feebody dagn of e b % = 3F " oo % 10 wr a0 % 10 PR =
The negatlies sign indicates o contraction of member AR Thas, the
deflection of end B is upward:
fp =0GIMmm|
Fop = B0 KN
Py = 50 N _c
A
A = B0 mm®
K I8 A= B0t R4 m E = 100 CFa
F = 0GP
] oy
Fap = Mk F ¥ iop = 0 kN
Fig. 2 Fres-bady disgram Fig. 3 Freebady disgram of
&l vea-Tans mesdser AR Fara-lofis mrsinle C1
{contimed)
L .

Prepared by : Ass. Prof. Dr. Ayad A. Sulaibi & Dr.Ghassan S. Jameel 234asall
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£ e
b. Deflection of D. Since In rod CD (Fig. 3), P = 90 kN, write

; PL (80 x 10° N)[0.4m)
DT AE " (800 % 10™ m'¥200 % 10° Pa)

= 300 % 107%m 8= 0300 mm/| 4

t. Deflection of E. Referring 1o Fig. 4, we denote by §' and [Y
the displaced positions of points B and D, Since the bar BDE is rigid,
points &, I¥, and E’ lie in a straight line, Therefore,

Fig. 4 Deflecoon a8 snd O of rigad
b are used to fnd B, BE BH 05l4mm (200mm) - x

e T e =737
OO - HD  G%00mm x o e
E,E &y nqmmmh (737 mm)

oY HD 0300 mm TAT mm

Bym L92mm | 4

REFLECT and THINK: Comparing the relative magnimde and direc-
ticn of the resulting deflections, you can see that the answers ofitained
ane consigtent with the loading and the deflection dingram of Fig, 4,

Example 201: A uniform bar of length L, cross-sectional area A, and unit
mass p is suspended vertically from one end. Show that its total elongation is
8 = pgL?/ 2E. If the total mass of the bar is M, show also that § = MgL/2AE.
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Solution 201

PL

= —

Fram the figure
=42

P = Wy = [pAy
L-d\lv %

— a5 = PAyiz dy

AE

L‘

«-PEfc g = PE|Y
- Bfyar - 24|

5= £ - 0] = ppL/2E k!

Given the total mass A
= M/V=MSAL

_*-h-

&= pgl:/IE = (M/ALglY/IE)
5= Mgl /2AF k!

Another Solution The weight will act at the center of gravity of the bar:
FL

Em 2=

Where: P =W ={pALlg
L=1L32

wa 5 lipAL)ZIL/2)
AE

F —
I
|+

L:
3= BE- ok!
2E

For you to feel the situation,
position  yourself m  pull-up
exercise with your hands on the
bar and your body rang treely
above the ground. Notice that
vour arms suffer all your
wﬂght and your lower hm‘l}'
Hhmgh'm[mﬂunfwughi
15 approcamately just below the chest). If your body
is the bar, the elongalion will occur at the upper half
of it.
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Example 201A :A steel rod having a cross-sectiona area of 300 mm® and a
length of 150 m is suspended vertically from one end. It supports a tensile
load of 20 kN at the lower end. If the unit mass of steel is 7850 kg/m® and E =
200 x 10°® MN/m?, find the total elongation of the rod.

Solution 201A

———

%

L

mm‘

wost

wost

-k

Let § = total elongation
5; = elongation due to its own weight
5, = elongation due to applied load

§=5+§;
FPL
™A

Where: P = W » 7850({1/1000)3({9.51)[300{150){1000)}]

P = 34653825 N

L= 751000) = 75 000 mm
A =300

E = 200 000 MPs

_ 34653825 (75000)
300 (200 000)

=433 mm

&

PL
-
AE
Where: P=20kN=20000N
L=150m = 150 000 mm
A = 300 mm®
E = 200 000 MPa

_ 20000(150000) _

000200000) 0o

&

Totale
§=4334+50=5433 mm
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Example 202 : A stedl wire 30 ft long, hanging vertically, supports aload of
500 Ib. Neglecting the weight of the wire, determine the required diameter if
the stress is not to exceed 20 ksi and the total elongation is not to exceed 0.20
in. Assume E = 29 x 10° psi.

Solution 202
Based on maximuim allowable stress:
F
o= —
A
20000 = LICL
T +md
d=00318in
WE Based on maximum allowable deformation:
FL
5 = —_——
) AE
500 |b I 0.20 = 50[3{;«0:-: 12](1
H—=4 1md=(29x10%)
—=
d=003% in

Use the bigger diameter, 4 = 0.0395 in

Example 203 :An auminum bar having a cross-sectiona area of 0.5 in?
carries the axial loads applied at the positions shown in Fig. P-209. Compute
the total change in length of the bar if E = 10 x 10° psi. Assume the bar is
suitably braced to prevent lateral buckling.

——h———————

if Sh 4k
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Solution 203
S000 b TN Py=t000b
iy LR
oy IR

P, = 6000 Ib tension
P,=10001bc¢c
P, = 4000 Ib tension

AE

b=b=-0:+5
- 6000(3x12) 1000(5x12) - 4000(4x12)

05(10x10°) 05(10x10°) 05(10x10")
5 = 0.069 in (lengthening)

Example 204: Axia loads are applied at the positions indicated. Find the
largest value of P that will not exceed an overal deformation of 3.0 mm, or
the following stresses: 140 MPa in the steel, 120 MPa in the bronze, and 80
MPain the duminum. Assume that the assembly is suitably braced to prevent
buckling. Use E4 = 200 GPa, E; = 70 GPa, and E, = 83 GPa.

Bronze

Shms 3 Algmum
A-I-Iﬂl'rw' A = 650 ‘.Jmml
1
P k ole - 4 w»
10 m 10 m 1.5m
Flgure P -211
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Solution 204

Based on allowable stresses

Steel
P, = oA,
P = 140(480) = 67 200N

By=P P=672KN

p «—{8—>

P=20 '
e R Piy = G
Py=20 2P = 120(650) = 78 000

BRI P-300N- 9

Aluminunc
Pu=cuAu
2P=80(320)=25000 N
P=12800N=128kN

Based on allowable deformation:

(meel and duminum lengthens, bronze shortens)
O0=08u-0* 3y

P(1000)  2P(2000) . 2P(1500)

480(200000) 650(70000)  320(S3000)

3= (welor - b * =iw )P
P=8461099 N =8461 kN

Use the smallest value of P, P = 128 kN

Example 205 :The rigid bar ABC shown in
Fig. P-212 is hinged at A and supported by a
stedl rod at B. Determine the largest load P
that can be applied at C if the stress in the
steel rod is limited to 30 ksi and the vertica
movement of end C must not exceed 0.10 in.

Prepared by : Ass. Prof. Dr. Ayad A. Sulaibi & Dr.Ghassan S. Jameel 294asall



UNIVERSITY OF ANBAR
COLLEGE OF ENGINEERING
DAM & WATER RESOURCES

N

STREMGTH OF MATERIALS

Solution 205

Free body and deformation diagrams:

t;g 75 B Ift

=—-——________=l,/"6‘

Based on maximum stress of steel rod:

IMa=0

3P =2Py
P=04F,

P = ﬂ.ilﬁgj.'dl.;:

P = 0.4[30{0.50)]
P =6 kips

Based on movement at
8, _ 01

F,(4x12)
0.50(29x10)
P,=12083331b

Example 206 :The rigid bar AB,
attached to two vertical rods as
shown in Fig. P-213, is horizontal
before the load P is applied.
Determine the vertical movement
of Pif its magnitude is 50 kN.
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Solution 206

Free body diagram:

1

C

e 35m ———}—— 25m ——
P =50 kN
For aluminum:
[T = 0] GFy = 2.5(30)
P,=2083 kN
[a _PLT - 20.83(3)1000°
AE |, " 500(70000)
Gai = 1.78 mom
For steel:
[EMs =0] 6F = 3.5(30)
P,.=2917 kN
[a _PL7 _ 29.17(4)1000°
AE |, ' 7300(200000)
=194 numy

Example 207:The rigid bars AB and CD
shown in Fig. P-214 are supported by pins
at A and C and the two rods. Determine the
maximum force P that can be applied as
shown if its vertical movement is limited
to 5 mm. Neglect the weights of all

members.

&p = vertical movement of P
Bp=178+y=178+009
&p = L.87 mm

Movement diagram:

A 3.5 B 2.5 C
A
T |

y 194-1758
35 o
y =009 mm

5T

P-I14
o e Alyminum

L= 3 m
A = 500 mo’
E= 70 GFa
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Solution 207

[ZM4 = 0]
Py=2P;

By ratio and proportion:

0 [~

Ual

FBD and movement diagram of

L

SP.H: = 6P;'r

"'J_B _ Oga
= T
" PL
Gg=2064=2]| —
P, E ai I_AE:L:
P, (2000}
%5 = 2| 500(70000
bar AB li }
8p = =5 Pa = =7 (2P2)
Op = Hl}.ﬁ P.: = movement of B

P: 4 Movement of D:

FBD and movement
diagram of bar CD

3m FL
| Op = Oz + 0p = |:—i| + %P_n
5 AE|, =7
P, (2000
oD = s'( ] -1_-31"5 P
5o 300(200000) .
op = _Lazonu FP.:
[ZMc=0] 6P =3P
Py= 1P
By ratio and proportion:
S _%
3 6
8p= 380 = 7 (ag Par)
8p = 55 Dot
5= mawm (2 P)

76363.64 N =764 kN

32484l
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Poisson's Ratio:

If abar is subjected to a tensile loading there will be an increase in length
of the bar in the direction of the applied load, but there is also a decrease in a
lateral dimension perpendicular to the load. It has been observed that for an
elastic materials, the lateral strain is proportiona to the longitudinal strain.
The ratio of the lateral strain to longitudinal strain is known as the Poison's

ratioand is denoted by v.

Poison's ratio (v ) = - lateral strain/ longitudina strain

3.

where g is strain in the x-direction and &, and ¢, are the strains in the
perpendicular direction. The negative sign indicates a decrease in the
transverse dimension when g, is positive.

For most engineering materials the value of (v) is between 0.15 and 0.33.

For most stedl, it liesin the range of 0.25to 0.3, and 0.20 for concrete.
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BIAXIAL DEFORMATION:

If an element is subjected simultaneously by Tensile stresses, oy and oy, in the
x and y directions, the strain in the x-direction is oy / E and the strain in the y
direction is oy / E. Simultaneousdly, the stress in the y direction will produce a
lateral contraction on the x-x direction of the amount (-v ¢, or -v 6,/E ). The
resulting strain in the x direction will be :

o o (g, +ve )E
gx= 2 -y—L orogy=- ———F

E E 1-v*

and

(4] a (g, +ve, )E
By = —L—y—L grg,= =1 =
E E ' 1=

TRIAXIAL DEFORMATION
If an element is subjected simultaneously by three mutually perpendicular
normal stresses oy, 6y, and 6,, which are accompanied by strains &y, €y, and &,

respectively,

1

ex = -E[o, -v(o, +0.)]
1

&y = _loy -\'(0’, +C:)]

E

g = %[0: -v(o, +0,)]
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Tensile stresses and elongation are taken as positive. Compressive stresses
and contraction are taken as negative.

Shear Deformation and Shear Strain

Shearing forces cause shearing deformation. An element subject to shear

does not change in length but undergoes a change in shape.

The change in angle at the corner of an original rectangular element is
called the Shear Strain(y)and is expressed as:
os

YZT

The ratio of the shear stress T and the shear strain vy is called the modulus of
elasticity in shear or modulus of rigidity and is denoted as G, in MPa.

T
G=—
|4
The relationship between the shearing deformation and the applied shearing
forceis:
. _ VL Tl
Oy ™ = —
AG G
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whereV isthe shearing force acting over an area As.

Relationship Between E, G, and v
The relationship between modulus of elasticity E, shear modulus G and
Poisson's ratio v is given as:

_E
T 2(14v)

Bulk Modulus of Elasticity or Modulus of Volume Expansion, K
The bulk modulus of elasticity K is a measure of a resistance of a material
to change in volume without change in shape or form. It isgiven as:
E o

S 31-2v) AV/V

where V is the volume and AV is change in volume. The ratio AV / V is
caled Volumetric Strain and can be expressed as:

AV _ o _ 3(1-2v)
v K | 3
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Solved Problems in Poison'sratio

Problem 222: A solid cylinder of diameter d carries an axial load P. Show
that its change in diameter is 4Pv / nEd.

Solution 222

. Bl‘l - _\.f.;
o
c = _\' —x-..
E
-p
— _\ —
d AE
| :‘-' . Pd
Tha load P can be compressive or tensile Oy =V :
+rd°E
1P
- — ok!
Hbd

Problem 223: A rectangular steel block is 3 inches long in the x direction, 2
inches long in the y direction, and 4 inches long in the z direction. The block
Is subjected to a triaxial loading of three uniformly distributed forces as
follows: 48 kips tension in the x direction, 60 kips compression in the y
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direction, and 54 kips tension in the z direction. If v = 0.30 and E = 29 x 10°
ps, determine the single uniformly distributed load in the x direction that
would produce the same deformation in the y direction as the original loading.

Solution 223

For triaxial deformabion (lensile tnaxial stresses):
(compressive siresses are negative stresses)

&y ™ %[Uy_"{ﬁl‘i'ﬂ:]]

P ,
E 'imﬁlnh’{ma

A, 02

F &0

A 4{3)
u;-—F‘— i =90 ks1 (tensiomn)

Ay 203

O™

= 5.0 ksi (compression)

1
®" 29.10°
gy = -3.276 x 10+

[-5000 - 0.30(6000 + S000)]

gy is negative, thus tensile force is requured in the
1-direchon to produce the same deformabion mu
the y-direction as the onginal forces.

For equivalent single force in the x-direchion:
(uniaxial stress)

=¥Ex ™ By

i
_"I_I -
I By

3u[ s ] = _3.276 x 10+

29x10°
@ = 31 666.67 psi —
-
g, = L =31 66467 28
4(2)
P, = 253 333,33 b (tension)

Px = 253.33 kips (tension)
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Problem 224 : For the block loaded triaxially as described in Prob. 223, find
the uniformly distributed load that must be added in the x-direction to produce
no deformation in the z-direction.

Solution 224

€= % [o: - v(o: + 0y)]

o, = 6.0 ks1 (tension)

oy = 5.0 ks1 (compression)

o: = 9.0 ksi (tension)
1 _

7T [9000 - 0.3(6000 - 5000))

™ 207 x10-

€z 15 posihive, thus positive stress i1s needed in the x-
direction to elimmate deformation in z-direction.

The application of loads is still stmultaneous:
(No deformation means zero strain)

:,--E-[o,-v(o.«to,)]-o

O: = v(ox + Oy)
oy = 5.0 ksi = (compression)
0: =90 ks1 = (tension)

9000 =~ 0.30(c, - 5000)

G; = 35 000 ps1

Catdes + 6000 = 35 000
Outdet = 29 000 psi
Pw =

2(4)
Posaes = 232 000 Ib
Pastes = 232 Kips
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Problem 225 : A welded steel cylindrical drum made of a 10-mm plate has an internal
diameter of 1.20 m. Compute the change in diameter that would be caused by an interna

pressure of 1.5 MPa. Assume that Poisson'sratio is0.30 and E = 200 GPa

Solution 225

oy = longitudimal stress

_ PD _ 1.5(1200)
4 4(10)

oy, = 45 MPa

Oy

O; = tangential stress Y
pD _ 1.5(1200)
24 2(10)
;=90 MPa

™

G
PIE L R

E E
20

g™ - 0.3:
200000 |

£: = 3.825 x 10+

1.20m

5 )
AD
D

AD =g, D = (3.825 x 10+)(1200)
AD = 0.459 mm

| - T

thickness,
t = 10 mm
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Problem 226 : A 2-in.-diameter steel tube with a wall thickness of 0.05 inch just fitsin a
rigid hole. Find the tangential stress if an axial compressive load of 3140 Ib is applied.
Assume v = 0.30 and neglect the possibility of buckling.

Solution 226 o= EL_VEL =

E E
O3 = VO,
where 0o = tangential stress
oy = longitudinal stress

B, 3140
Oy = — = ————
A n(2)(0.05)
oy = 31400/ x psi
2 3 ox = 0.30(31400/ x)
3”. o; = 9430/ x psi
0 o i

Problem 227 : A 150-mm-long bronze tube, closed at its ends, is 80 mm in diameter and
has a wall thickness of 3 mm. It fits without clearance in an 80-mm hole in a rigid block.
The tube is then subjected to an internal pressure of 4.00 MPa. Assuming v=1/3 and E =
83 GPa, determine the tangential stressin the tube.

Solution 227
Longitudinal stress:
pD _ 4(80)
G T = VRS
Yoa o 43)
&0
oy= — MPa
3
The strain in the x-direction is:
Ex = &—vi =0
E E
Oz = VO, = tangential stress
i 1780 ]
*" a3 )
P - Ox = 3189. MPR 41" 8 “
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CHAPTER 3

Statically | ndeterminate Members

There are many problems, however, in which the internal forces can not be determined
from statics alone. In fact, in most of these problems the reactions them selves—which are
external forces—can not be determined by simply drawing a free-body diagram of the
member and writing the corresponding equilibrium equations. The equilibrium equations
must be complemented by relations involving deformations obtained by considering the
geometry of the problem.

Because statics is not sufficient to determine either the reactions or the internal forces,
problems of this type are said to be statically indeter minate. The following examples will
show how to handle this type of problems.

Solved Problemsin Statically | ndeterminate Members:

Problem 201A: Steel bar 50 mm in diameter and 2 m long is surrounded by a shell of a cast
iron 5 mm thick. Compute the load that will compress the combined bar atotal of 0.8 mmin
the length of 2 m. For stedl, E = 200 GPa, and for cast iron, E = 100GPa

Solution:

PL
| [

AE
Ocant trom ™ Omeet ™ 0.5 mum

o™

P.s o (2000) =
[4 (607 - 507))(100000)

Pasioee =11 0002 N

Qoare from

.. (2000)
& 2 Lo

T 14 r(50%))(200000)
Pt = 50 0007 N

S.—\ =0

P = Posyiroe + Pont
P=11000x + 50 000x
P=61000x N

P= 19164 kN

Prepared 42444
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Problem 202A: Reinforced concrete column 200 mm in diameter is designed to carry an
axial compressive load of 300 kN. Determine the required area of the reinforcing stedl if
the alowable stresses are 6 MPa and 120 MPa for the concrete and steel, respectively. Use
Eco = 14 GPaand E¢ = 200 GPa.

Solution 234

14000 200000
1000= = 70:

When g, = 120 MPa
100G — 7(120)
On = 8.4 MPa > 6 MPa (not ok!)

When Ce ™ 6 MPa
100(6) = 75,
G ™ 85.71 MPa < 120 MPa (ok!)

Use g, =6 MPa and o, = 85.71 MPa

2Fv=0

Pyt + Poo = 300

Oy Ay + O A ™= 300

85.71A, + 6| -} n(200)2 - A,,] = 300(1000)
79.71A, + 60 000x = 300 000

A, =1398.9 mm?
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Problem 203: A rod of length L, cross-sectional area A1, and modulus of elasticity E;, has
been placed inside a tube of the same length L, but of cross-sectional area A, and modulus
of easticity E,. What is the deformation of the rod and tube when aforce P is exerted on a
rigid end plate as shown?

/—‘t'nl--r- (Ag, Eq)
e

Rod (A, E;)

"~ End plate

B L_ ';-__.:h—

Solution:

Denoting by P1 and P2, respectively, the axial forcesin
the rod and in the tube, we draw free-body diagrams of — r
al three elements. Only the last of the diagrams yields

any significant information, namely:

P1+P=P  ------ () o [

Clearly, one equation is not sufficient to determine the

two unknown interna forces P; and P,. The problem is |
staticaly indeterminate. .
However, the geometry of the problem shows that the !
deformations

61 and 62 of the rod and tube must be equal. We can write::

P1L P2L
61 =———and 62 =
A1E1 A2E2

2

Equating the deformations 81 and 62, we obtain

P1 P2

HEL - gz T ©)

Equations (1) and (3) can be solved simultaneously for P, and Pa:

AEWP AgEoP
15 P, alla

pj=——= e e
'TAE, + ASE, * T AE, + AE,

Either of Egs. (2) can then be used to determine the common deformation of the rod and
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Superposition Method. We observe that a structure is statically indeterminate when ever it
is held by more supports than are required to maintain its equilibrium. This results in more
unknown reactions than available equilibrium equations. It is often found convenient to
designate one of the reactions as redundant and to eliminate the corresponding support.
Since the stated conditions of the problem cannot be arbitrarily changed, the redundant
reaction must be maintained in the solution. But it will be treated as an unknown load that,
together with the other loads, must produce deformations that are compatible with the
original constraints. The actual solution of the problem is carried out by considering
separately the deformations caused by the given loads and by the redundant reaction, and
by adding—or superposing—the results obtained.

Problem 204: Determine the reactions at A and B for the stedl bar and loading shown in
Fig. 2.24, assuming a close fit at both supports before the loads are applied.

1 I- "i
&= D i
b = 23 s - 154 s " L]
% ___:I 300 kN | NN
1Al e —_— N F i
: " ~ .t
- - 1
b = G0 e K ;_-*:Jiluh 1 1
K - RO | GO0 kM
II 4
AF i &= ] &LL___I_LEH '_

|

Solution:

We consider the reaction at B as redundant and release the bar from that support. The
reaction Rg is now considered as an unknown load (a) and will be determined from the
condition that the deformation d of the rod must be equal to zero. The solution is carried

out by considering separately the deformation 8, caused by the given loads (b) and the
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The deformation 8, & obtained from Eq. (25) after the bar has

been divided into four portions, as shown in Fig. 2.26. Following the same Ap—
procedure as in Example 201, we write 4| 150mm

Po=0 Py=Py=600% 1°N P, =90 x 10°N . LS —LS "
ol Ky min

A= A=400X 10" Ay=Ai=20X10"m o Ln |
Li=ly=ly=L,=0150m 2 1s,u1mm

i 3 O T =

Substituting these values into Eq. (2.8), we obtain i l dq | ED+mm

4 PL, 600 X 10° N Z *

Oyt 7 e et | ) o
“AE 400 % 107%m g 226

600 X 10°N 900 % 10°N )u.lsum
- T -
MO X 107t 0 x 107%%) E

1125 X 10*

8. = E (217

Consiloring now the deformation 8x due to the redundant reaction TG
Rg. we divide the bar into two portions, as shown in Fig. 227, and
write A0 mm
Pl s Pz = -R’
A =400 X 107" m® Ay =250 % 107 i?
Ly = Ly = 0300 m 1 300 mm
E
Suhstituting theses vahees into Bq, (2.4), we nbtain TRH
ME Pl 1U5 = 1008, Fig. 2.27
§ = '!+’“_*=—i Lk il (2.18)
i 1 F '."EI a f
Exprewing thut the totul deformution & of the bar must be siera, w
wlie
6=, + 8y =1 (2.19)
ancl, snbatituting for & and S, from (2.7} and (2150 into (2.048],
n,
LIZ% % 1P {195 % 107, 1
6= : : : = s
E I |
Sohane for Ky, we hawe e
Rg= 577 % 10" N = 577 kN e
' The reschion Ry wul ithar |||_:-l11-|: r:ll'll[u:l'rl iv obtained fooon e e — m— N
bodv diagram of the har (Fig, 2.28) We write .

H1ZF, =0 Ry — MOEN — G00EN + Hy =0 T
Ry =000 kN — Ry =900 kN — 577 kN = 321 kN "
Ot resicticms hoe Been |:|-:'-1rri1|i1:||.-||_ the stresses and shrains
in the har can essily be obtained. Tt should he neted that, while the total
dedirrination of the by & e, cacls of it co ol parts s ;I'-L_':I'::-'r'“r.ll
under the piven leading aod restraining conditions,
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Problem 205: A rigid block of mass M is supported by three symmetrically spaced rods as

shown in Figure. Each copper rod has an area of 900 mm? E = 120 GPa; and the allowable
stress is 70 MPa. The steel rod has an area of 1200 mm? E = 200 GPa; and the allowable

stressis 140 MPa. Determine the largest mass M which can be supported.

& i
Copper Slesl Cnpper
163 mem 240 mim 150w
w - Mg E:LED = \E'Sr' ) )
(<) - ()
e\ E ), \E ),
¥ T
[ — ISR FEEEE : o, (160) _ o,,(240)
_j:f—f””“ﬁm Pat Peo (1L 120000 200000
106, = 9G;;

When oz = 140 MPa

O = % (140)

Tgp = 126 MPa > 70 MPa (not ok!)
When g = 70 MPa

g.= 42 (70)

O = 77.78 MPa < 140 MPa (ok!)
Use g, = 70 MPa and o,, = 77.78 MPa

TFr=0

2Py + Pa =W

2(CeA ) + O = Mg

2[7D(?00)] + 77.78(1200) — M(9.81)
M=223584 kg

H.W

In Prob. 205, How should the lengths of the two identical copper rods be changed so

that each material will be stressed to its allowable limit?
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CHAPTER 4
Thermal Stresses

Temperature changes cause the body to expand or contract. The amount d+, is

given by :
or=all{ly- I))=al Al

where (a) is the coefficient of thermal expansion in m/m°C, L isthelength in
meter, and (T; and Ty) are theinitial and final temperatures, respectively in °C.
For stedl, 0 =11.25 x 10°/ C".

stress will be induced in the structure. In some cases where temperature
deformation is not permitted, an internal stress is created. The interna stress
created is termed as thermal stress.

For a homogeneous rod mounted between unyielding supports as shown, the

thermal stressis computed as:

i

deformation due to temperature changes,

or =al AT

deformation due to equivalent axial stress,
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PL ol

apn_z_

AE E

Or = Op
al AT = -?-I-'-
E

c=EaAT

where (o) is the thermal stressin MPaand E is the modulus of elasticity of the
rod in MPa.

If the wall yields a distance of (x) as shown, the following calculations will be
made:

Sr=x+0p ///H’ %q
oL AT = x % - : o

Xbp.

where (o) represents the thermal stress.
Take note that as the temperature rises above the normal, the rod will be in

compression, and if the temperature drops below the normal, the rod is in
tension.
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Solved Problemsin Thermal Stress

Problem 261: A steel rod with a cross-sectional area of 0.25 in® is stretched
between two fixed points. The tensileload at 70°F is 1200 |b. What will be the
stress at 0°F? At what temperature will the stress be zero? Assume a = 6.5 x
10®in/ (in-°F) and E = 29 x 10° psi.

Solution 261

Far the stress at 0°C:
o= G+ Oy

- |
= o (AT) + Y

P
o =aE(AT) + —
A

G = (6.5 x 1079)(29 x 10°)(70) + 1200
0.25

G = 17 995 psi = 18 ksi

For the temperature that causzes zoro stress:

OT ™ Qs
2 8
ok (A -
1aD) AE
_ 1200
6.5 = 10T =70) =
'[ } 0.25(29 = 10%)

T=09546°C
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Problem 262: A steel rod is stretched between two rigid walls and carries a tensile load of
5000 N at 20°C. If the allowable stress is not to exceed 130 MPa a -20°C, what is the
minimum diameter of the rod? Assume a = 11.7 pm/(m-°C) and E = 200 GPa.

Solution 262

S = 81 + Oy

ob al(AT) + L]
E AE

o =aE(AT) + £
A
5000

130 = (11.7 x 107°)(200 000)(40) +

= _5_9951 = 137.36 mm?

-i-n d*=137.36; d=13.22mm

Problem 263: Stedl railroad reels 10 m long are laid with a clearance of 3 mm at a
temperature of 15°C. At what temperature will the rails just touch? What stress would be
induced in the rails at that temperature if there were no initial clearance? Assume o = 11.7
um/(m-°C) and E = 200 GPa.

Solution 263

Temperature at which 5r = 3 mm:
i=3mm or = aL(AT)
T= C"-L(T_.*'_ T)
= (11.7 x 107%)(10 000)(T¢— 15)
40.64°C

]

h | !
.
[
-
L*)

H

£
¥

10 m 5= 3 mm
Required stress:
o= 51’
'C:E_I& = ok (AT)

o= {)'.E‘:Tif— T,} I
G = (11.7 x 107)(200 000)(40.64 — 15) 51daial
g = 60 MPa
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Problem 264: A steel rod 3 feet long with a cross-sectional area of 0.25 in.? is stretched
between two fixed points. The tensile force is 1200 Ib at 40°F. Using E = 29 x 10° psi and o

= 6.5 x 10° in./(in.-°F), calculate (a) the temperature at which the stress in the bar will be 10
ksi; and (b) the temperature at which the stress will be zero.

Solution 264

(a) Without temperature change:
o=P/A =1200/0.25 = 4800 psi
o=48ks1 <10 ks
A drop of temperature is needed to increase the
stress to 10 ksi. See accompanying figure.
8 =381+ 0y

c—g‘- = o (AT) + i

AE
o = aE(AT) + %
10 000 = (6.5 x 10°9)(29 x 109)(AT) + 22;’50
AT = 27.59°F
Required temperature:

(temperature must drop from 40°F)
T=40-2759=1241°F

(b) From the figure below:
o= 51
- PR
Ib — A
1200 . - aX(AT)

1200 : P = cAE(T;~T)

(e — 1200 = (6.5 x 107°)(0.25) (29 x 10°)(T;— 40)
T5= 65.46°F
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CHAPTER 5
BEAMS

v r
I ntroduction : i l . l

* Beams - structural members supporting
loads at various points along the "
member.

* Transverse loadings of beams are
classified as concentrated loads or
distributed loads.

* Applied loads result in internal forces
consisting of a shear force (from the
shear stress distribution) and a bending
couple (from the normal stress
distribution).

Classification of Beams:

1- Statically Determinate Beams:

Statically determinate beams are those beams in which the reactions of the
supports may be determined by the use of the equations of static equilibrium.
The beams shown below are examples of statically determinate beams.

.
Statically ﬂ F.n
Dutennimite
Beans |
- l'. - o f. - - !‘

W) \'nulll} suppe srte] beam A!'.»-()w-rh:m-:ngh.':m: ¢) Cantilever beamn
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2- Statically Indeter minate Beams:

If the number of reactions exerted upon a beam exceeds the number of
equations in static equilibrium, the beam is said to be statically indeterminate.
In order to solve the reactions of the beam, the static equations must be
supplemented by equations based upon the elastic deformations of the beam.

o Y Comtiy unn\lr.nl- ¢ Beam | vl o me ead 1 Fixed beam
andd sy :'vl-_ n ,H..-'..l
at the aother el

The degree of indeterminacy is taken as the difference between the
number of reactions to the number of equations in static equilibrium that can be
applied. In the case of the propped beam shown, there are three reactions (R,
R,, and M) while only two equations (XM = 0 and Fv = 0) can be applied, thus
the beam is indeterminate to the first degree (3—2 =1).

1 p w {N/m)

L Propped Beam
Ry

TYPESOF LOADING
L oads applied to the beam may consist of a concentrated |oad (load applied at

a point), uniform load, uniformly varying load, or an applied couple or

moment. These loads are shown in the following figures.
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lp‘ 5, l w (%/m)
L | -
Concentrated Loads Unifoem Load
v
& 2 A
Undormly Varying Load Apphed Couple

Shear Force and Bending M oment Diagrams

Shear Force and Bending Moment Diagrams
are plots of the shear forces and bending

moments, respectively, along the length of a

beam. The purpose of these plots is to clearlly - -
show maximum of the shear force and bending

moment, which are important in the design of

beams.

The most common sign convention for the " : ’
shear force and bending moment in beams is ¥ ij
shown in Fig. 9.12. "'( L» 'ﬁ
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M M
C U1 L
v
Pasitive banding miaman Pogifrve Shsal

Figure 812 Sgncomvernton for bending
micimart and shoear

One method of determining the shear and moment diagrams is by the
following steps:
1. Determine the reactions from equilibrium of the entire beam.
2. Cut the beam at an arbitrary point.
3. Show the unknown shear and moment on the cut using the positive sign
convention shown in Fig. 9.12.
4. Sum forcesin the vertical direction to determine the unknown shear.

5. Sum moments about the cut to determine the unknown moment.

Example (1)

For the beam shown, derive equations for shear force and bending moment at
any point along the beam.
I |
l :| iJl
; |

Al
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Solution:
We cut the beam at a point between A and B

at distance x from A and draw thefree-body | .
i u
diagram of the left part of the beam, directing l)

V and M asindicated in the figure.

2F,=0: 2M,=0:
P+V=0 Px+M=0
V=-P (}) M=-Px( ) |/

e Note that shear forceis constant (equal P) along the beam, and bending

moment is a linear function of (x).

Example (2):
For a cantilever beam AB of span L i
supporting a uniformly distributed HH 1l ---H HHI““.

load w, derive equations for shear a1l - i
L

force and bending moment at any

point along the beam.
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Solution:
We cut the beam at a point C between A and B and me
draw free-body diagram of AC, directingV and M as '

indicated in Fig. Denoting by x the distance from A \J : H-' l""jll )\'
to C and replacing the distributed load over AC by its ]~ ‘~§‘
resultant (wx) applied at the mid point of AC, we
write:
2F,=0: 2M,=0:

-wx -V =0 i

zr.‘u(g) + M=10

V =-wx M= — %u'.'rﬂ
Example (3):
For the smply supported beam AB of span b ; b, .
L supporting a single concentrated load P, L
derive equations for shear force and ‘i ’ = =
bending moment at any point aong the
beam.
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Solution:

We first determine the reactions at the supports
from the free-body diagram of the entire beam; we
find that the magnitude of each reaction is equal to 4
P/2. Next we cut the beam at a point D between A T T
and C and draw the free-body diagrams of AD and el @ "3’
DB. Assuming that shear and bending moment are
positive, we direct the interna forcesV and V’ and d
the internal couples M and M’ as indicated in Fig. M
Considering the free body AD and writing that the "1 ‘l )

sum of the vertical components and the sum of the " (r" h. . —
moments about D of the forces acting on the free y - 4 1
body are zero, we find: .

V =+P/2 and M =+Px/2. o

Both the shear and bending moment are therefore P

positive; this may be checked by observing that the ( ‘ E
reaction at A tends to shear off and to bend thebeam A/ = ")“
a D asindicated in Figs. b and c. The shear has a T,“ L "(f 2
constant value V =P/2, while the bending moment ' LE '
increases linearly fromM =0at x=0to M =PL/4 at | v ‘ #1.-‘—.1
X =L/2. ) e UF

Cutting, now, the beam at a point E between C and B and considering the free body EB
(Fig. c), we write that the sum of the vertical components and the sum of the moments
about E of the forces acting on the free body are zero. We obtain:

V =-P/2and M =P(L -x)/2.

The shear is therefore negative and the bending moment positive; this can be checked by
observing that the reaction at B bends the beam at E asindicated in Fig. ¢ but tends to shear
it off in amanner opposite to that shown in Fig. b.

Note that the shear has a constant value V = -P/2 between C and B, while the bending
moment decreases linearly fromM = PL/4atx= L/2toM=0atx= L.

\
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Shear Force and Moment Diagram

The determination of the maximum absolute values '
of the shear and of the bending moment in a beam are ITTITT
greatly facilitated if V and M are plotted against the J P hy
distance x measured from one end of the beam. L
Besides, as you will see later, the knowledge of M as a I
function of x is essential to the determination of the -
deflection of abeam.

In the examples and sample problems of this section,
the shear and bending-moment diagrams will be
obtained by determining the values of V and M at
selected points of the beam. These values will be found
in the usual way, i.e., by passing a section through the .
point where they are to be determined (Fig. a) and ' i
considering the equilibrium of the portion of beam
located on either side of the section (Fig. b). Since the
shear forces V and V have opposite senses, recording
the shear at point C with an up or down arrow would be ; i
meaning less, unless we indicated at the same time L
which of the free bodies AC and CB we are
considering.

For this reason, the shear V will be recorded with asign: a plus
sign if the shearing forces are directed as shown in Fig.a, and a
minus sign otherwise. A similar convention will apply for the
bending moment M. It will be considered as positive if the
bending couples are directed as shown in that figure, and negative
otherwise. Summarizing the sign conventions we have presented,

we state: 1) (1

The shear V and the bending moment M at a given point of
abeam are said to be positive when the internal forces and Sl
couples actingon each portion of the beam are directed as shown s s and gosttres Evsling measos
inFig. a.
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Example (4): For the beam shown, plot the shear and moment diagram.

Solution:
First, solve for the unknown reactions using 3
the free-body diagram of the beam shown in Fig, l
I

(8. to find the reactions, sum moments about the I
left end which gives: 2’*%?
6R, — (3)(2)=0o0or R, =6/6 = 1 kN [
Sum forces in the vertical direction to get:
R1+R2=3=R1+10rR1:2kN b
Cut the beam between the left end and the load as 1
I
I

shown in (b). Show the unknown moment and '
shear on the cut using the positive sign
convention. Sum the vertical forces to get: )
V = 2 kN (independent of x)

Sum moments about the cut to get:

M M "
M = Ryx = 2x =) {{ |=+
Repeat the procedure by making acut between 2w I "= ¥ a1

the right end of the beam and the 3-kN load, as Lo e}
shown in (c). Again, sum vertical forces and sum v 2 i
moments about the cut to get: ol
V =1 kN (independent of x ), and M = 1x
The plots of these expressions for shear and
moment give the shear and moment diagrams (as ol * i

shown in Fig.(d) and (e). i e

4m A
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e It should be noted that the shear diagram in this example has a jump at the point of the
load and that the jump is equal to the load. This is aways the case. Similarly, a moment
diagram will have ajump equal to an applied concentrated moment. In this example, there
was no concentrated moment applied, so the moment was everywhere continuous.

e Another useful way of determining the shear A o

and moment diagram is by using differential s d| TN
relationships. These relationships are found by g f [ ‘ '
considering an element of length Ax of the beam. ' ! 1 l l SYERRERE' “ 44 1
\ . '
The forces on that element are shown in Fig. - ¢ e 0
-——y——a| te-Qx
YFy=0: V-(V+AV)-wAx=0 g
AV = —WAX '
Summation of forcesin they direction gives :
\
- (TZ]] Y-
which gives: @ O
dVv g
— = =W Ax
dx

XD
Vp —Ve =- [wdx
Xc

SMe =0: (M+AM)-M —VAx+wa%=o
AM =VAX—:—2LW(AX)2

MD—MczTde
Xc
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The load g = ~wy. so Eq. (9.59) reads

V=t [y =2

Noting that the moment at x = 0 is zero, Eq. (9.60) gives

wolx woxt  wx
g =T (L-%)
7 3 B

"

:L-ubﬁ¢:=o*

s ||

Example(5) The ssimply supported
uniform beam shown in Exhibit 16 R RER R RN RN RRERY
carries auniform load of wy . Plot the

shear and moment diagrams for this : 4 L o
beam. Exnibit 16
Solution

As belore, the resctions can be tound first from Lhe free-body diacram of the beam
shown in Exhibit 17{a), It can be seen that, from symmetry. R, = K. Summing
verlical forces then gives

"
| ERERERRERERTER!

i
A, Ry
(4]

wLi2
v \J
wyli2

3]

=)

Exhiisit 17
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It can be seen that the shear diagram is a straight line, and the moment
varies parabolically with x. Shear and moment diagrams are shown in
Exhibit 17(b) and Exhibit 17(c). It can be seen that the maximum bending
moment occurs at the center of the beam where the shear stressis zero. The
maximum bending moment always has a relative maximum at the place
where the shear is zero because the shear is the derivative of the moment,
and relative maxima occur when the derivativeis zero.

Solved problems

Write shear and moment equations for the beams in the following problems, In each
problem, let x be the distance measured from left end of the beam. Also, draw shear
and moment diagrams, specifying values at all change of loading positions and at points

of zero shear. Neglect the mass of the beam in each problem.

Problem 403
Beam loaded as shown in Fig. P-403.

Solution:

From the load diagrame
EMy=-0

SR+ 14300 = 3{30)
Rp=24 kN

Yrp=0
3By = J{H0) = &30)
Ry = 56 kN

&N
Sepment AE: I
'r"_.“. = _ 4y ke Lol
Mg = -Mx kN m 5'"-'
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Segment BC: N
Ve = =-30 + 56 >
=26 KN A
Mspc=-30x+56(x - 1)
=26z - 56 kN'm
im
B, = 56 hN

Vo=-30+56-30

- -24 kN

im

: ‘[’T . 'W‘ Segment CD:
- —

Im

He = 55 kN

Lload A
Diagram

Moment
Diagram
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Mop=-30x +
= -30x +
-=24x +

50N

=30 kNam

56(x - 1) - 50(x - 4)
36x - 56 - 30x + 200
134

To drow the Shear Dagram:

(1) In segment A2, the shex i
urdformly distnibutad ovar the
seoment ot a magniude of -30
kN

(2) In segmert BC, the shear s
urdormly  disbibuted at a
magnitude of 26 kN.

(3] In segment CD, the shewr s
urdformly  disuibuted at A
magnitude of -29 k.

To draw the Moment Diagram:

(1) The cquabor My = ~30x »
btvear, ot » = 0, Mg = 0 and ot
X=1lmMy=-30kNm

(2) Mg = 2x — 56 is also Fres.
Axwim My ==30kNm; at
¥ o= Am, My =48 W When
Mec = 0, x = 2154 m, thus the
moment & 2=x0 3t L1559 m
hom B

(3] My, = =24x + 144 b agan
bncar. Al x = 4 m Mo = 48
N atx=6m, Mg =0,
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CHAPTER 6
STRESSESIN BEAMS

Forces and couples acting on the beam cause bending (flexural stresses) and
shearing stresses on any cross section of the beam and deflection
perpendicular to the longitudinal axis of the beam. If couples are applied to
the ends of the beam and no forces act on it, the bending is said to be pure

bending. If forces produce the bending, the bending is caled ordinary
bending.

Flexure Formula:

Assumptions
1) A plane section of the beam normal to its longitudinal axis prior to loading remains
plane after the forces and couples have been applied.
2) Thebeamisinitially straight and of uniform cross section.
3) Themoduli of elasticity in tension and compression are equal.
4) The stresses and strains are small (within elastic range), material is homogeneous

and Hooks law is applied.
Deformations In A Symmetric Member in Pure Bending

Fig.1 Member in pure bending. x

Fig. 2 Beam in which portion CD is in pure bending.
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Fig.3 Deformation of member in
pure bending.

lat) Longitudinal, vertical section
(plane of ;},r:nmetry}
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) Lomgitucinal, vertical section
(plane of symmetry)

M
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-
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M

o) Lomgatidinad, hortsontal section

Neutral

Fig. 4 Deformation with Respect to Neutral Axis
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Denoting by p the radius of arc DE (Fig. 4-a), by © the central angle corresponding to
DE, and observing that the length of DE is equal to the length L of the unreformed member,
wewrite:

L'=(p—y - 2
Since the original length of arc JK was equal to L, the deformation
of Kis:

R PR (A —— 3)

or, if we substitute from (1) and (2) into (3), :

d=1(p—yd—ptl = —yf v @)

Thelongitudinal strain €4 inthe elements of JK is obtained by dividing
é by the original length L of JK. We write:

o —y#
€, = — =
L pt
i
Or Bl - ®)
p

Because of the requirement that transverse sections remain plane, identical deformations
will occur in all planes parallel to the plane of symmetry. Thus the value of the strain given
by Eqg. (5) is valid anywhere, and we conclude that the longitudinal normal straing; varies
linearly with the distance y from the neutral surface.

The strain g reaches its maximum absolute value when y itself is largest. Denoting by c the
largest distance from the neutral surface (which correspondsto either the upper or the lower
surface of the member), and by &y the maximum absolute value of the strain, we have:
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Stresses And Defor mations In The Elastic Range

We now consider the case when the bending moment M is such that the normal stresses
in the member remain below the yield strength oy. This means that, for all practica
purposes, the stresses in the member will remain below the proportiona limit and the
elastic limit aswell. There will be no permanent deformation, and Hooke’s law for uniaxial
stress applies. Assuming the material to be homogeneous, and denoting by E its modulus of
elasticity, we have in the longitudinal x direction:

Recalling Eq. (7), and multiplying both members of that equation by E, we write:

y
Ee, = - ;—I{EEJ“]

Or i
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where 0, denotes the maximum absol ute value of the stress.
This result shows that, in the elastic range, the normal stress
varies linearly with the distance from the neutral surface

(Fig.5).

It should be noted that, at this point, we do not know the
location of the neutral surface, nor the maximum value o, of
the stress. Both can be found if we recall the equations of
equilibrium which were obtained earlier from statics.
Substituting first for o, from (5) into

YF.=0, Jo.da=0
wewrite:
(Y o, |
o, dA = (— ;—(r,,,)(l.-\ - - ydA =0
P P .
from which it follows that:
J yedA =0 e (10)

y

B D e ) 4

Neutral surface P

}—
+—o
I — -~

Fig. 5 Bending stresses.

This equation shows that the first moment of the cross section about its neutral axis
must be zero. In other words, for a member subjected to pure bending, and as long as the
stresses remain in the elastic range, the neutral axis passes through the centroid of the

section.

We now recall the 3. Eq. of equilibrium, with respect to an arbitrary horizontal

Z - axis,

Y M,=0 |, Il yor, dA) = M

Specifying that the z - axis should coincide with the neutral axis of the cross section, we

substitute for oy from (9) and write :

: i
(—u) (—'{—,a...) dA = M

70daiall
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oy

i dA = M

e

But 4
|ng:'.|.|'.". = |

(where | isthe second moment, of the cross section with respect to a centroidal axis
perpendicular to the plane of the couple M ), then we can write :

And, _Hﬂ.
PO A—CE)

Equations (11) and (12) are called the elastic flexure formulas, and the normal stress oy
caused by the bending or “flexing” of the member is often referred to as the flexural stress.
We verify that the stress is compressive (o > 0) above the neutral axis (y > 0) when the
bending moment M is positive, and tensile (ax < 0) when M is negative.

Note:: from now, in this chapter the notation ( f, will be used instead of o,
to denote the flexural stress.

Now we can write;

= MY and (o=
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SECTION MODULUS

Mc M
In the formula, ( fp)max = T e

the ratio I/c is called the Section Modulus and is usually denoted by S with units of mm?® or
(in®). The maximum bending stress may then be written as::

M

(fb)max: ?

This form is convenient because the values of S are available in handbooks for a wide
range of standard structural shapes.

The deformation of the member caused by the bending moment M is measured by the
curvature of the neutral surface. The curvature (k) is defined as the reciprocal of the radius
of curvature p, and can be obtained by from :

| e 1 o, 1 Mc
Then, —_ZIm n' Ko Fe §
ol p Ee Ec I
1 M
> = (13)
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SOLVED PROBLEMSIN FLEXURE FORMULA

Problem 503 A: cantilever beam, 50 mm wide by 150 mm high and 6 m long, carries a
load that varies uniformly from zero at the free end to 1000 N/m at the wall. (a) Compute
the magnitude and location of the maximum flexural stress. (b) Determine the type and
magnitude of the stress in a fiber 20 mm from the top of the beam at a section 2 m from the
free end.

Solution 503
M=F(4x)
y _ 1000

thus M= 327 (4x)
M=

(a) The maximum moment occurs at the support (the
walljoratx=6m.

M= 30,° - 367

= 6000 N'm

Lﬁ;" o ME o Me
¢ =75 mm e e TS 3
Lk I
oA i ™ 12

2 (6 g, = S000(1000)(75)
T I
50(150)

b = 50 mm 12
(5 Jonas = 32 MPa

(b) Ata section 2 m from the free end or at v = 2 m at
fiber 20 mm from the top of the beam:

M= 3P = 302)
h =150 mm M= 38 Nm

My _ (3%)(1000)(55)

Lot o

I 50(150) Jdaiall
12

# = 0.5691 MPa = 869.1 kPa

h=
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Problem S04
& simply supparted bearn, 2 inowide by 4 in high and 12 18 lang is subjected o a
concentrated load of 2000 b at & point 3 ft from ane of the supports. Determine the

maximum fber sktress and the stress ina fiber located §.5 in from the top of the heam

at midspan.
Solution 504
Mg =0
2000 b 12R, = H(2000)
Ri=1500Ib

|.._:|r T ok o

g
|
= 12R; = 3(2000)
R =500 [b
I K 1
o

i Maxamum fiber stress:
| 150010 ;

b=din

b=lin

Mc _ 4500(12)(2)
I 2{4)
12

(o Do ™=

{ f o ™= 10,125 psi

Stress in a fiber located 0.5 mn from the top of the
beam at midspan:

My 200

L 9
M = 3000 Ib-£t

=t

. 3000{12)(1.5)
2(4%)
12 e
£ =5,0625 psi e

£
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Shearing Stressesin Beams

All the theory which has been discussed earlier, while we discussed the bending stresses in
beams was for the case of pure bending i.e. constant bending moment acts along the entire
length of the beam.

Let us consider the beam AB transversely P P
loaded as shown in the figure above l l
Together with shear force and bending ) !
moment diagrams we note that the middle A A c D

potion CD of the beam is free from shear «—2 s
force and that its bending moment. M = P.a
is uniform between the portion C and D. This
condition is caled the pure bending
condition.

Since shear force and bending moment
are related to each other F= dM/dX (eq)
therefore if the shear force changes than
there will be a change in the bending
moment also, and then this won't be the pure
bending.

+P

Conclusions. Hence one can conclude
from the pure bending theory was that the
shear force at each X-section is zero and the
normal stresses due to bending are the only
ones produced.

P.a

Let us study the shear stresses in the beams.

Concept of Shear Stressesin Beams:

By the earlier discusson we have seen that the bending moment represents the
resultant of certain linear distribution of normal stresses &x over the cross-section.
Similarly, the shear force Fx over any cross-section must be the resultant of a certain
distribution of shear stresses.

Derivation of equation for shearing stress:
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Resutant siresses (this 5Ke is maore as

compared 1o the olher alde)

7. £

dA
This Is the small
elsmenl over which
the siresses acls

M+5M 2 =wigth of the
X Sednn

Assumptions:
1. Stressisuniform across the width (i.e. parallel to the neutral axis)
2. The presence of the shear stress does not affect the distribution of normal bending
Stresses.

It may be noted that the assumption no.2 cannot be rigidly true as the existence of shear

stress will cause adistortion of transverse planes, which will no longer remain plane.

In the above figure let us consider the two transverse sections which are at a distance ¢ dx'
apart. The shearing forces and bending moments being F, F + dF and M, M + dM

respectively. Now due to the shear stress on transverse planes there will be a
complementary shear stress on longitudinal planes parallel to the neutral axis.

Let T be the value of the complementary shear stress (and hence the transverse shear stress)

at adistance y, from the neutral axis. Z is the width of the x-section at this position

A isareaof cross-section cut-off by aline parallel to the neutral axis.

¥ = distance of the centroid of areafrom the neutral axis.

Let § , 6+ d& are the normal stresses on an element of area dA at the two transverse
sections, then there is a difference of longitudinal forces equal to ( dé . dA) , and this
quantity summed over the area A is in equilibrium with the transverse shear stress T on the
longitudinal plane of areazdx .
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e TEfK= Ida.d»‘l‘«
fram the bending theary equation
a _ M

Thus |:Ic:r=5r'"f|1—'Elr

The figure shown below
indicates the pictorial
representation of the part.

{o+=do)dA

do = Gy
I
T.Z0% = ,[dcr.dﬂx X
_ .[ ahd -y B4 {Pictorial representation

| of entire part)
T.Z0%x = $ ,[y.ﬁﬂx

il
F=——
G

ig. T= i,[j,f.ﬁf-‘«
l.z

But

But from defintion, | y.dA = Ay

Iy.dﬂx iz the first moment of area of the shaded portion
and y =centroid of the area'A’
Hence

F.iy
l.z

']':

Where ‘Z' is the actual width of the section at the position where ‘ T ' isbeing calculated and
| is the total moment of inertia about the neutral axis.

Prepared by : Ass. Prof. Dr. Ayad A. Sulaibi & Dr.Ghassan S. Jameel 7748l



UNIVERSITY OF ANBAR
COLLEGE OF ENGINEERING
DAM & WATER RESOURCES

CNAERSITY OF ANl

STREMGTH OF MATERIALS

Shearing stress distribution in typical cross-sections:

Let us consider few examples to determine the sheer stress distribution in a given X-
sections.

Rectangular x-section:

Consider arectangular x-section of dimensionb and d .

A isthe area of the x-section cut off by aline paralel to the neutral axis. v is the
distance of the centroid of A from the neutra axis.

forthiscase, A

1l
(=
—

i
7

-y l+y] 4 I

While

—=|
1

3
ie y=;_|:§+g,r) andz=h;l=%

substitutingallthesevalues, intheformula

;= Fhy
l.z
d 1 d
Fbhiz-v.-i=+
(2 ¥l 5 ':2 ¥)

3
h_h'd

12

{9

b, of*

This shows that there is a parabolic distribution of shear stresswith'y.
The maximum value of shear stress would obviously beat the location y = 0.
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_G.F d
suchthat 1 LFT
_ 3F
Z2bd

=0 Tmax = 23I:|Fd The value of T, occurs at the neutral axis

The mean shear stressinthe beamis defined as

TITIEEI'IDr Ta\.g = % = %d

S0 Trax= 18 Trean = 1.5 Tavg

Therefore the shear stress distribution is shown as below.
It may be noted that the shear stress is distributed parabolically over a rectangular cross-
section, it ismaximum at y = 0 and is zero at the extreme ends.

W2/ gi

{d/2)

T

{Shear stress is distributed
parabolically over a reclangular

{ds3) cross-section, it is maxmum at
y=0 and is zero at the extreme
= onds)

o Tmax™

| —section : Consider an | - section of the dimension shown bel ow.

le « - Flange
I 5 / s
7w 0777777
/ y 5 - Hare lange and Weh
7 LLL L / Ticnees gre same]
rje— 4
T
¥
Ol N €= —m =
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The shear stress distribution for any arbitrary shape is given as
_FAYy
T

Let us evaluate the quantity Ay , the quantity Ay for this case comprise the
contribution due to flange area and web area.

Flange area :
D —d] le : -

Area of the ﬂ5|r1g|e=EI[T

Distance of the centroidafthe flang e fromthall A [ A '

2 2

= 0+d ¢ 2
¥ ) N = ey

_ OD-dyfD-d
"E"'.'I'I|Flange =B[T]{T]

Web Area

Araanfihewah 2R
_JY_
eeb2-3)

[netance ol the cenfrmddfmen i 2
_Ifd
?_i[? 3']*'3' a2
—_ | d+ y
L1 N A

Theralon:,

— d 1944
o (2

Hence,

- O-dyf0+d g yd, .0
A | =B == N ] | [

T huz,
_ -4 b [df
Alj.l-r‘:‘:’ -E[ E ]"-j [T- :r.?]
T herelore chear strass,
EBD? - o* i
F B - ') bfd? _yz-]

Hence,

T

“hi | ]
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To get the maximum and minimum values of t substitute in the above relation.
y=0aN.A. Andy = d/2 a the tip.

The maximum shear stressis at the neutral axis. i.e. for the conditiony =0 at N. A.

L atj,r=D=%[Ei 07 - #)+08?] ()

Hence,
The minimum stress occur at the top of the web, the term bd 2 goes off and shear stressis

given by the following expression :
_um F
T aty—d&—m[ﬁ (D* —.:F)] ............ 3)

The distribution of shear stress may be drawn as below, which clearly indicates a parabolic
distribution:

_F . 3
o TE [B (D? - &) +bd ]
Note: from the above distribution we can see that the shear stress at the flanges is not zero,
but it has some value, this can be analyzed from equation (1). At the flange tip or flange or
web interface y = d/2. Obviously then this will have some constant value and then onwards
thiswill have parabolic distribution.
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In practice it is usually found that most of shearing stress usually about 95% is carried by
the web, and hence the shear stress in the flange is negligible however if we have the
concrete analysis i.e. if we analyze the shearing stress in the flange i.e. writing down the
expression for shear stress for flange and web separately, we will have this type of
variation:

Parabolic

This  distribution is | | >
known as the “top — hat” BN
distribution. Clearly the a5
web bears the most of the Sl — -
shear stress and bending Tane™
theory we can say that J
the flange will bear most W
of the bending stress. | | —

Toad™

Tav

Shear stressdistribution in beams of circular cross-section:
Let us find the shear stress distribution in beams of circular cross-section. In a beam of
circular cross-section, the value of Z width dependson'y.
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Using the expression for the determination of shear stresses for any arbitrary shape or a
arbitrary section.

_ FAY _ FA Jyda
Zl Z
Where oy dA isthe area moment of the shaded portion or the first moment of area.

Here in this case ‘dA' is to be found out using the Pythagoras theorem:

3] e

I

Z) =gt -5% o £=m

z z2

=2 -y
db =T dy =207 - ¢ dy

At

n.a for acircular cross- sadion =T

Hence.

Fi
T:F;r = F [ 2yFT - fay
) E‘_.TE v,
Whata R = radiue of thea citcla.
[The mdshave beentaken ftorm y, 10 R because
wa hawetofind momant of areathe shaded podion|

AF I =
T JrofRT -y
:'TH - v,
Theinfagration yigldsthafinal resull 1o ba
AP
InR?
Adainthisisa parabolic digriboution of she ar sresshavning
am@simumny alue whan gy, =0
4 F
3me*
Obyiously i the end=af tha dimmelerihavalueofy, = *Rthus r= 0

T

Trrn:-."“l!u"1 =0=

=0 Lhigagaina parabohe diztribution, ma gimarmaitheneotiala as

Alzn
_F_F
Tavg ! mam T8 T T
Hence,
I -4'!
mad™ F A
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The distribution of shear stresses is shown below, which indicates a parabolic distribution:

—
S
"

A
3nR?

Quiz No. 4 :
For the beam and loading shown :
Draw the shear and bending-moment diagrams and determine the maximum

value of (w) which can be applied such that the normal bending stress will not
exceed (120 MPa).

For the section S250x52 use: | =61.2x 10° mm* , S=486x 10°mm?®

W (kN/m)

S250 x 52

T =i
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Unsymmetrical Beams

Flexural Stress varies directly linearly with distance from the neutral axis. Thus for a
symmetrical section such as wide flange, the compressive and tensile stresses will be the
same. This will be desirable if the material is both equaly strong in tension and
compression. However, there are materials, such as cast iron, which are strong in
compression than in tension. It is therefore desirable to use a beam with unsymmetrical
Cross section giving more area in the compression part making the stronger fiber located at
a greater distance from the neutral axis than the weaker fiber. Some of these sections are
shown below.

NA.

The proportioning of these sections is such that the ratio of the distance of the neutral
axis from the outermost fibers in tension and in compression is the same as the ratio of the
allowable stresses in tension and in compression. Thus, the allowable stresses are reached
simultaneously.

In this section, the following notation will be use:

for = flexure stress of fiber in tension.

foc = flexure stress of fiber in compression.
N.A. = neutral axis.

y; = distance of fiber in tension from N.A.

Yc = distance of fiber in compression from N.A.
Mr = resisting moment.

Mc = resisting moment in compression.

Mt = resisting moment in tension.
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Solved Problems in Unsymmetrical Beams
Example (1)

The inverted T- section of a4-m simply supported beam has the properties shown in Fig.
The beam carries a uniformly distributed load of intensity w, over its entire length.
Determine w, if fp; < 40 MPaand fp. < 80 MPa.

Solution: T—‘ B

Mo = b, 12

=15 000 000 N mun
=15 kN -mm

_ 80(30x10%)

200
= 12 000 000 N-mun
=12 kN.mm

M.,

The sechon is stronger in tension and weaker m

compression, 50 compression govems in selecting the
maximum moment.

.»Lu-.w
Zw, = 12
1. = 6 kN/m
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Example (2)

Daterming the maximum tensile and compressive stresses developad in tha
owerhanging beam shown in Fig. P-554. The cross-section 15 an inwerted T with the

given properties.

1500 b 0 b

Soluthon 554
Thls-=0
12R: = 16015) = 4000¢a)
Ry = 4000 b

Thig =0
128, + 1600(3) = 400046}
Ry = 1600 b

- My
| bl

At M = —4800 T ft
- 4502112
A Bd

= 137143 psi B bower Blbey

o BE00CTMLT)
f 54
= 4300 p=i < upmpeer Al

it A = G The £

_ ‘ST LX)
A i

= G0 pesi - uipper fley

_ IebO{212)
5
= 13256 psa - lower fibes

B

Macirmnam fleome shress:
oo = BE00 pui
fo= 4500 pal
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A cantllever beam carries the force and couple shown In Fig. P-552. Determine the
maximum tensile and compressive bending stresses developed In the beam,

S kip 0 kph

Y

g

it

aft
Figure P-552

Solution 552

R=5kp

M=58)-30
=10 kp ft

L

iR
R=5kp At M = +10 kip-ft of moment diagram

I : _ 10(6)12)
1 =

-5 ko : =8 ksi - upper fiber
: net, ' 10(2)(12)
ot
-10 kip ft =267 ka - lower fiber
20 kph

At M = =20 kap ft of moment diagram
e 20(2)(12)
90
=533 kst - lower fiber

- 20(6)(12)
) e
=16 ksi - upper fiber

Maximum bending stresses:
foe = B ksi
fou= 16 ksi
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Example (4)

A beam carres a concentrated load W and a total uniformly distributed load of AW as
shown in Fig. P-555. What safe value of W can be applied If f,, < 100 MPa and f,, < 60
MPa? Can a greater load be applied If the section Is inverted? Explain,

w [ ] l751!!'!1

L-Zm 4m

[ZMe=0] 4R -6W-3M2)
w R.=35W
W N = S [ SV =0) 4R « 2W= gV
R=15wW

2 -6-1'
T LW
15Wh = 10W = 251
1=25m

. ]
l‘ '

At M=V
For lower tiber, 4, < 100 MPa
2WAIHM0)

100 - i
W=%00N

For upper fiber, A < 60 MPa
a0~ ZAUTINI000)

Mx 10

W=900N

At M= L125W
For upper fiber, £, < 100 MPa

s uﬂ%m 1000)

W=S4eHN
For lower fiber, £, < 60 MPa
@=1 125IW(L25)1000)
24x10°
We=10.80 N

For safe load WV, use 1V =900 N
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CHAPTER 7
Deflection of Beams

(I) Method of Double Integration

Differential Equations of the Deflection Curve (Elastic Curve):

The problem of bending probably occurs
more often than any other loading problem in ,
design. Shafts, axles, cranks, levers, springs, *
brackets, and wheels, as well as many other
elements, must often be treated as beams in the
design and analysis of mechanica structures and
system.

A beam subjected to pure bending is bent into
an arc of circle within the elastic range, and the
relation for the curvatureis:

1 M(X)
5 E 1)

Where: p istheradius of the curvature of the neutral axis?
X isthe distance of the section from the left end of the beam.

The curvature of a plane curveis given by the equation:
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d?y
_ X’

(2

(QJ isthe slope of the curve and in the case of eastic curve the lopeisvery

N w

(2)

dx
small:
2
g :O ]
dx
(el - _ - T
l_dzy .,_J____t____
d’y M(x)
* @& E 3

Multiply both sides by EI which is constant and integrating with respect to x:

El (?j — M) dx +C, (4)

Noting that [?] =tan(f) =0(x) because the angle 0 is very small.
X

Then Eqg. (4) can be written as:

El 8(x) = Jﬂ M(x) dx + C,

=L}

Prepared by : Ass. Prof. Dr. Ayad A. Sulaibi & Dr.Ghassan S. Jameel 91iadall



UNIVERSITY OF ANBAR
COLLEGE OF ENGINEERING
DAM & WATER RESOURCES

STREMGTH OF MATERIALS

CNAVERSITY OF AN

And integrating the equation again:
El y=][]M(x)dx +Cy dx + C;
El y=][]M(x)dx] dx + C,x + C,

()

The constants C; and C, are determined from the boundary conditions

(constants) imposed on the beam by its supports.

The figure shows different boundary
conditions applied for the three typica
types of statically determinate beams:

(@) the simply supported beam, (b) the
overhanging beam, and (c) the cantilever
beam.

In the first two cases, the supports
consist of a pin and bracket at A and of a
roller a B, and require that the deflection
be zero at each of these points. Letting first
X=X Y=VYa=0in Eg. (5, and then
X = Xg, Y = yg = 0 in the same equation, we
obtain two equations that can be solved for
Cland C2.

In the case of the cantilever beam, we
note that both the deflection and the slope
at A must be zero. Letting X =Xa, Y=Ya=0
in Eq. (5), and X = Xa, 8 = 0, = 01in EQ. (4),
we obtain again two equations that can be

solved for C1 and C2.

h) Overhanging beam

Cantilever beun

Prepared by : Ass. Prof. Dr. Ayad A. Sulaibi & Dr.Ghassan S. Jameel 92iaiall




COLLEGE OF ENGINEERING

UNIVERSITY OF ANB

M & WATER RESOURCES

STREMGTH OF MATERIALS

Thie cunitiloser lwwn AR & of onilferm cros soction and cardes o bood T EMMPI..E ?,ﬂ'l
al ity Free eral A (P 980 Detennine the egquatiom of the sbatic core
andd the deflectiom arnl slope at A

P

|
Y
A = e Al _.Ij?-i
: ; =
| : ]
Fig. 9.9 Fig. 9,10

Using the free-hly disgrom ol the poction. AD of the beam
-_l'r.-__lr A0, wher O s bocatead ai o cbstanee 5 from emd A4, o B

M=-F (3= A

Substitutig for M into B (80410 anil mialiiphang beth oenbeas By il
oxmatant Ef, we wnle

l'.:li.lll
E} —= —Fr
|||"|"
Integrating o, we ohiain
I
Er il —iet + 0y CELR)
oy
Wi e nbsers that st the fived sned B owe bhine r o= 1 and # = diygfole = 0 o
|I‘|g. SN B hllh:.tltnlirg._l these waltes meo CREY wnd sull.-lng for O, we
lyawes
Gy = dre -
whitch we CHITY bk bnee [ H40:
el } L, i
El —= —Lth* + LF1? (L)
' - : Fig. .11

.Ilrl\.'l.':l"-‘.'lutl!.rl hoth embers of |:':J|. CEREN e Wb
Ely= —35" + @5 + 0y (R L]
Baut. ot [fowe have o= L. g = 01 Suhstitoting fote (90U, we boees
= =gl + 3P0+ 0
g = —4FL?
Chyrnimgg the value o Gy back into Fagp (5000, wa olsain e capuation of
the elastic cire:

Ely = —4ia* '+ dprte - dpL?

i
AT
The deflectiom and slopa ot 4 are obtained by letting x = § in Eoqs
(LT ond (8,91 W Fmd

_ PER d g = (:l'glll _ PET
YA = Zgpr- M AT NES, T B

n)

=+ 5% — 2%y .11

2l

5]
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EXAMPLE 9.02

fig. %13

The: dmply supported prsmatic beam AR camios & wmiformly distribarted
beaped v per it bemgth (B 90320 Dietermine the squation of the ekt
ourve ane] the i deflection af the beam

LI I I IO O

AR .
..,
Fig. 2.12

Drrvving, the free-baby dingrom af the porion AI of e heam
i Fig, 813 mid taking noments abem 0, we G that

o= diefr — L ® (412

Gabituting fnr W into E-:l. R |r|.1|||!||'.h]:u:11.c hoth membem of tha:
spaatiem by the comestant B2, v wrile

%y by _
Ih! T Eu._,‘. + EWLJ' LIS M A
Inbeszrading dwice inor, we lgave:
s 1 1
Hf:—ﬁum‘ +II|'T.I‘+1-'| ]
. 1 1 . -+
.F_f:ll - — -:I—_Iu_—_r'l + I—:.lrl'_'rll + I'.'|'r o [LLN B

1'H:n;|-r'.'in!_r. 1t § = bath owids of the boam (Fig B14), we fiist Lot
0= Wil y = Ak i g 8050 and alsaiin G = 0 W then ke s = L
anil = 1 in the same eijuation anel write
0= — danl® + fpuel? + O3l

= =l
‘|'J.|‘|'\_h'|.|||_l| e vadues of [ arvel Ly hiack inbn Eﬂl LS v obtuln the
el ol e elostie sare:

I"||!|| = - i—l'.u.. + {In.'ll.a.-'l - i;ﬂ. J.*J.

Lt
y= L|;—|." L e
JAEY
Subet#uting into E-Ll (B 14 e valoe obtaimesd Fo I.-'|. w check
{hit the shopes of the beom s wem for g = L2 ol that e ebotic pure

has a mirirmm at the Iﬂlltllllrﬂ £ ol e heam iFig. W13 Lethimg v =
Llllf in I‘:Il. (ELI, wa hovs

(b W L7

o M _L"' i Sarl.t
YT | AT LK
The magmenns diflction o, mom |_|I-|-|."n-|.'|[.'. thie mncinene alolite valoe
af the aledlection, & s

B_ 4
L. I:' = -

i TH [.‘
EEAERT

|'|'|ll:=
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In each of the two examples considered so far, only one free body diagram was
required to determine the bending moment in the beam. As a result, a single function of x
was used to represent M throughout the beam. This, however, is not generaly the case.
Concentrated loads, reactions at supports, or discontinuities in a distributed load will make
it necessary to divide the beam into several portions, and to represent the bending moment
by a different function M(x) in each of these portions of beam. Each of the functions M(x)
will then lead to a different expression for the slope 0(x) and for the deflection y(x). Since
each of the expressions obtained for the deflection must contain two constants of
integration, alarge number of constants will have to be determined.

As you will see in the next example, the required additional boundary conditions can
be obtained by observing that, while the shear and bending moment can be discontinuous at
several points in a beam, the deflection and the slope of the beam cannot be discontinuous

at any point.

slope and deflection at point D,

2. FromDto B [x=

3P

For the prismatic beam and the loading shown (Fig. 9.16), determine the

where glfrfl is the function which defines the elastic curve for portion AD
of the beam. Integrating in x, we write

e
ElI 8, = EI on
dx

—P:" + O,
1
Ely, = EPIQ + Cp + G,

LAAL We now draw the free-body diagram
of a portion of beam AE of length x > L/4 (Fig. 9.18) and write

My= "z — P
Ty

EXAMPLE 9.03

a4

We must divide the beam into two portions, AD and DB, and deter- )
mine the fmction ylx) which defines the elastic curve for each of these L
portions. ¥
1. Frem A te D (x < [/4). We draw the free-body diagram of j,l\_
a portion of beam AE of length x < L/4 (Fig. 9.17). Taking moments b
about E, we have Fig. 9.16
My=—=z 9.17)
".'l
or, recalling Eq. (9.4), Al ] ) M,
& ]
g/
EI d"’f = 018) 7%
2

(9.19) r

(9.20)

L
—) w21
1
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or, recalling Eq. (9.4} and rearranging terms,

Fl /] Lo + Lpr, (9.22)
= - — + — a i ]
it 4 4

where yz(x) is the function which defines the elastic curve for postion DB
of the beam. Integrating in x, we write

Elﬂn—EI—fbjg——lPx2+lPLx+C (9.23)

T & T8 4 : '
Lo, 1.

Efygz—EPr +§PL1' + Cax + Oy (0.24)

Determination of the Constants of Integrafion. The conditions
that must be satisfied by the constants of integration have been summarized
in Fig. 9.19. At the support A, where the deflection is defined by Eq. (9.20),
we must have x = 0 and ¢, = 0. At the support B, where the deflection is
defined by Eq. (9.24), we must have x = L and y> = 0. Also, the fact that
there can be no sudden change in deflection or in s]fﬁpe at point I requires

that iy, = 4 and 8, = 8, when x = L/4. We have therefore:
= 0.y = 0], Eq. (9.20): 0=0C 9.25
Fig. 9.19 [x = 0.4 = 0], Eq.(9.20) : (9.25)
[t = Ly = 0]. Bq. (9.24): 0= I—LEPLS + CaL + Gy (9.26)

[x = L/4, 6, = 8c). Eqs. (9.19) and (9.23):

3 a3 T e
— PP+ C,= —FL + C 9.27
128 7o s (9.27)

[x = L4, 4 = y,). Eqs. (9.20) and (9.24):

PL? L 11pL? L
— + == +C—+C 9.25
512 47 1536 ®4 * (9.25)

Solving these equations simultanecusly, we find

TPLE 11PLE PI?
Ca=0C3=— =—
1257 T A 128 © 47 384

C]_=_

Substituting for €} and C; into Eqs. (9.19) and (9.20), we write that for

x = L4,
3, TPLE
= — E— .29)
Els, SPI 128 (9.29]
1 TPL?
Ely, = —=Px* — 9.30)
yr= g = o {

Letting x = L/4 in each of these equations, we find that the slope and
deflection at point I are, respectively,
% SPL*

]

=

We note that, since 8, = 0, the deflection at I is not the maximum
deflection of the beam.
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SAMPLE PROBLEM 9.1

& The overhanging steel beam ABC carries a concentrated load P at end C. For
portion AB of the beam, (a) derive the equation of the elastic curve, () deter-
'T' B o mine the madmum deflection, (¢ evaluate . for the following data:
e - W14 x 65 I=722mn E = 29 x 10° psi
P=50kips L= 15ft= 180in. a=4ft=48in.
| L |—a—
- SOLUTION
Free-Body Diagrams. Reactions: By = Pa/L | By = P(1 + /L) 1
? - FC Using the free-body diagram of the portion of beam AD of length x, we find
M=-PLy (0<x<L)
Ra Rg k
| i L, Differential Equation of the Elastic Curve. We use Eq. (8.4) and write
I I = dzy &
N = —P—x
EI e F T X
A :|D ) M Noting that the flexural rigidity ET is constant, we integrate twice and find
—— (2. L. 1)
5 ey Gl 1 1]
yR,=pz e 2L
Ely=— %P%r‘q + Cix +Cs 2)
Determination of Constants.  For the boundary conditions shown, we
have

[x =0,y =0l From Eq. (2), we find Cy=10
[x = L. y= 0] Apain using Eq. (2), we write

il 1 a_, 1
!.,= I !'.'='J| |_\ =4'..5|=|.I| E”:[]'}= _EPEL e ClL C‘1= +EPEL
e : :
A= — Pt a. Equation of the Elasic Curve. Substituting for € and C; into Eqs.
Eﬁ%c (1) and (2), we have
dy 1.4 1 diy  Pal [ (;r H
I —— _:___2 fit e ——— —_ —_ 3
4 | EIG:I EPLI + EPrJL T GEl 1—1 T (3)
U _Pﬂﬁi_(i)'
Ely = EPLI f EPﬂLx = BEI [L L) | (4]
i b. Maximum Deflection in Portion AB. The maximum deflection
e Wemag OCcurs at point E where the slope of the elastic curve is zero. Setting
! = . dyfde = 0 in Eq. (3), we determine the abscissa x, of point E:
o B ol
‘ir“ ‘ = o 0= ﬂ[l = .3(1—“) ] = 2= 05TTL
. GEI ) 5
We substitute x./L = 0.577 into Eq. (4) and have
Pal? = Pal?
= BT — (0. e — L0642 —
s = T [(057T) — (057T] g 0642

c. Evaluation of y,... For the data given, the value of gy, is
_ (50 ips)(48 in.)(150 in.}

" (29 x 10° psi)(722 in")

Yoy = 0.238 in.

Yo = 0
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L SAMPLE PROEBLEM 9.2

.- For the besn sl Toaillng stwewn, detemaiig L) thieorpudion of e elastic
EEEE ] Y 11 ﬂuj'l-r' at ened A& () the e deflectinn.

SOLUTION

'Di"lﬂ-ul'l.'.ln! rq'.u:ﬂlpcu al rha Ehasde Curve. P I".l;l. (4 1 e

EI.-:‘J_‘= ~#ifxj = — 1y =n ’Ll

Entegrnbe B, CF) barpoe:
oy L e
EJF: ¥ = twimm— 1 3 4]
T4 ¢
: -'I= M= ful__'L_.‘-i"E'l'rl.'x‘.'f: ik

- FariLal
e e s
Bramaary Crndeiimne

E

e =ik & = 1§: From . (1) ve [md =10
¥ 2 =L M =d¥: Agtabn uskng Ha. (1, we wriio
1]

Ky
fl i 0= LI:.-,—’_'I'II'I.'E + E|I. 'r-'| =i
[y T

._l: - — e n 3 . 3
e :T ey & I
A S W — ¥ — idl
P 'ru-.:—w‘ uin 3

Eistegmbe B (4) bafio
Ef—=Elg= —|L'.—m.':r+-l:1 151
? EX o oww ; ..
H!-'l= -ED;ﬂnT + Catt Ly [LE]

Hl.llllu!lll!_,l A inely thenag
[x =ik y =] Lagng Bay. (15, we flixd Gy=1
[g= L y=9  Again using B (8L we fnd £5 =0
a. Egqualian all Elastic Curve Ely = —i |.%-m1

E b Slope ot Bnd & Forz = i, we hioe
::;"-:"_1#. A il

L
Erdy=— ||.'|]—.|-:1cﬁﬂ fy = ————
-5

. Mozmum Debedion. Forrx = {H.-

o T gl
E.Lﬂ'u_ = —— E Ve — e
w
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- £l

B
| L |
]
L ll",.f) l.'i ;
I‘_Ix*| w= ||l—
.-|"'."-| _|/
e e NN I .I
| |
D| )
z B
By
¥
[e=L. #=10]
r=Lg=0
[x=0y=10]
A I
%—-———sﬁﬁf-‘f’_}ﬂ
A - — i x
NE—=
! L

SAMPLE PROBLEM 9.3
For the uniform beam AB, (@) determine the reaction at A, (B derive the

equation of the elastic curve, (c) determine the slope at A, (Note that the
beam is statically indeterminate to the first degree.)

SOLUTION

Bending Moment. Using the free body shown, we write

_ ! 1 u'.:.;.xu' x _ _ w.;.x:!'
+)SM,=0: Rg _E( : )3— M=0 M=Rg--2
Differential Equation of the Elastic Curve. We use Eq. (8.4 and write
d 21_;’ w.;.:l'S
. Jedl R .
e T TeL
Noting that the flexural rigidity ET is constant, we integrate twice and find
E'IEJ' 1 wc.x"
EI—=EIf= —Ex*— + € 1
dr gt gy Tt &
1 g wer £
Ely= EIR_.‘.J: 120L + Cx + Cs (2)

Boundary Condifions. The three boundary conditions that must be
satisfied are shown on the sletch

[k=0y=0}: Ca=0 &)
1 4 i

[x=L.68=0] E;»111.2—“"j+¢:1=4:+ (4)
:L'I

[t =L.y=0] %HALH—“;G +CL+Cy=0 (5)

a. Reachon at A Multiplying Eq. (4) by L, subtmacting Eq. (5) member
by member from the equation obtained. and noting that Cs = 0, we have

TR — Lupli=0 Ry= &wdl t
We note that the reaction is independent of E and I. Substituting B, = gL
into Eq. (4}, we have

Hipwol)LP — frwel® + €, =0 € = —gpuwl?

b. Equation of the Elastic Curve, Substituting for Ry, Cy, and C;
into Fq. (2], we have

11 wor” L
Sy = E(E ”"DL)IE - 0L (120 “’“LE)X

_ Mo Ny gpt.a 4
= e e
Y= To0EmL' " © =)
c. Slope at A, We differentiate the above equation with respect to x:
cly Wy
=i =B+ 6Ly — L
dx 120EIL{ )
: wpl. oL’
Making x = 0, we have Jo—— 190E] 8= 12%1”
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USING SINGULARITY FUNCTIONSTO DETERMINE
THE SLOPE AND DEFLECTION OF A BEAM

Let us consider again the beam and loading of £
Example 9.03 (Fig. 9.16) and draw the free-body L4 | .
diagram of that beam (Fig. 9.27). Using the | ’ L

|

appropriate singularity function, to represent the A
contribution to the shear of the concentrated |oad
P, we write:

0 iy

P Fig. 9.16 [repeated)

Integrating in x and recalling that in the absence /4

of any concentrated couple, the expression I L
obtained for the bending moment will not contain
any constant term, we have:

M(x) = 14— v— Ple— 3L v 5P

Fig. 9.27 Fres-body diagram for
beam of Fig. $.14.

Ay 3p . :
El— =2 — Plx — 11
e 14 { i

and, integrating in X,
.-.'I' 3

(e = El—=—
EL s Bl =
I ¥ | [ . @ E.._ =1}, l"lI [ \ Loof = .'.i
Fly=—Ir —=PBx— Ly + T+ Cs Al _
b fi -  a—— SV

¢ ' §

P~ — I’{J' — 1LY + C, 1

|
3

The constants C, and C; can be determined from Fig. .28 Boundary conditions for
the boundary conditions shown in Fig. 9.28. beam of Fig. 9.16.
Lettingx=0,y=0inEqg. of yabove, we have:

iz g _
0=0—-——P0—sLY +0+ Ca
6 ° %
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which reducesto C, = 0, since any bracket containing a negative quantity is equal to zero.

Letting now x =L, y =0, and C, = 0 in the same equation of y above, we write:
PP S
() =—Pl _-llll:.f'r‘-:l i lr'llll_.
5 {3

Since the quantity between brackets is positive, the brackets can be replaced by ordinary
parentheses. Solving for C1, we have:

TPL
128

{.|= =
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EXAMPLE 9.06

For the beam and keelme shewn (Fig. 5.2 wd ndng singo bty func-
biowes, o) express the slope andd defleckion as fonctivns of the didinoe
b e suppart at A, (F) deternmne IJu. aedlectivn ok the mzlpint 2 Use
E = 200 Gl and F = 687 % 105 m

tal Wi note thot the Femn = Tosded and 11|]:I]H'-1'h'lr e b e

ia
e as the beum ol Exampls 505 Befemng o Hut exomple, we neall
that thee given distriborted] loading was. repled by the ten equivalent
opet-ended kadiogy shown o Fig. 9290 anid thee the fedlimcing expres-
i wire alvtwmed fox the shewr sl be LI.I.IJII_' itk
Wx) = —L5 - 06) + L5 — L&' + 26 — 1.3k — o6’
Mix) = —0.T50 — 06F + 0TSy — 187
+ L6r — L2 — 06) — L+x — 26
il
Integratimy the lnsf espresion beice, s abibun
FH 3 & 1 !
ETe = —028)y — 061 + 0380 — 147 : -
+ 13 — DA — 06 — 1444 — 2R 0 (DN ||'\-- pEkm o Me ||.1_- '
Efy = —00625(r — 0A" + 00625 — L8 + D431 PR
- i — 0 - TRy - 268 + G+ 0
4 7 1111 _'I 1
The comstants 4 aml C3 cn be detennimsd from the bomidary q\Hﬂ_
comilitions steean i Fig. B0 Letbing o o= 0 4 = & fn Ex (348 sl
vativg, Bt ll the brackets comtain negative quantities and, therebore, e =—LEm—=_|
|1||.l.ll oz, v conddide that {"3 =k I.-C't".'ll!_-: nne § = 1.6 i = i, amicl Il'.l- 2 | \'\ i}
T = i i Erp (5481, v write f e X
A n kX my = — 1.5 R
0= —ni6as3.0) + 006351 8y i
+ 04136 — 0330Y — DIHL0F + Oy(0E + ik
Fig. 929
Simee oll Hee cpamities bebwesem brackets are positiee, the brckasts can be
reploced by onbinary parentheses. Solving e ©), we find ©p = — 2652,
Fig. @.00
il ?:'u1u.lel1ul:|q:__1i:|1'l'.'3'| el £ imfn Ii:i. LA ] tmlLIn:,;J. =1ip=
18 1o, wee Finl Bk this aloflectiom at point O &= defivead byt melofion
Efyp = —0.06251.20" + toazsfo)y
+ A3RF LAY - 010 — 0.7 -0EF - 26501 8)
Thee last Benchoot wongains o pegative quantity.and, therelore, s cqual ta
gere, Al thee wther brcksts ok resitive: ||||.I.||rl.l:||.1. and can b '[ILI.'L'IJ
b ardimary parentfiesss, We b
Elyy = —00623 1.2y + gonzsgo)!
+ DAL — 02 LAY — 0 — RO 1K) = — 2T
Bievalling the given wimerical valiwes of B asd [ we write
[FNCPEET % 107 m'ys = —2794 kN » m
= — 1564 > 10 % = — 203 mm
n
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